Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73032
標題: 使用次詞單位及遷移學習之跨語言及語音問答系統
Cross Lingual and Spoken Question Answering with Subword Units and Transfer Learning
作者: Chia-Hsuan Lee
李佳軒
指導教授: 李琳山(Lin-shan Lee)
關鍵字: 文字問答,語音問答,次詞,遷移學習,
Text Question Answering,Speech Question Answering,Subword,Transfer Learning,
出版年 : 2019
學位: 碩士
摘要: 本論文研究主題涵蓋兩大前瞻性方向:語音問答系統(Spoken Question Answering)和跨語言問答系統(Cross Lingual Question Answering),實驗語料為英文以及中文,包含語音訊號以及語音辨識轉寫(Transcription)。
語音問答以英文維基百科的合成聲音以及中文維基百科的真實人聲為應用領域, 本論文蒐集建構了兩個大型問答集,提供了研究者們夠大量的高品質的資源,嘗試解決過去無法訓練複雜深層學習(Deep Learning)模型的問題。由於含有眾多語 音辨識錯誤,在標竿資料集上表現頂尖的問答系統在語音環境下表現,相較於純 文字環境下皆呈現大幅度退步。本論文使用聲學上的次詞單位去呈現文章中的詞,藉由次詞單位可以將辨識錯誤的文字與正確轉寫的文字之間的語意做連結, 讓問答系統可以得到較為貼近正確轉寫文字的資訊,實驗結果顯示不論在中文或 英文上,次詞單位都能夠有效提升模型的表現。
由於訓練深層學習的問答模型需要大量人工標注的資料,並且當前幾乎所有大型 問答資料集都是英文的,因此問答模型的發展在英文以外的語言上相當緩慢。本論文探討如何將英文資料裡的知識遷移到中文的問答模型上,亦即跨語言遷移學 習(Cross Lingual Transfer Learning),首先,使用機器翻譯系統將英文資料集翻譯 成中文,作為額外的訓練資料,可以成功提升中文問答模型的表現。然而,不是所有語言之間都有高品質的機器翻譯系統。本論文接著提出一個只需要詞對詞雙 語詞典作為語言資源的模型,此模型引入了生成對抗學習,透過句子編碼器與語 言鑑別器之間的對抗,句子編碼器可以將不同語言文句的表徵(Representation)投 射到共享的高維向量空間上,因此可以讓模型同時從不同語言的資料中有效率的學習。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73032
DOI: 10.6342/NTU201901515
全文授權: 有償授權
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.84 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved