Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7300
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊健志(Chien-Chih Yang)
dc.contributor.authorYu-Sheng Linen
dc.contributor.author林煜晟zh_TW
dc.date.accessioned2021-05-19T17:41:11Z-
dc.date.available2022-07-24
dc.date.available2021-05-19T17:41:11Z-
dc.date.copyright2019-07-24
dc.date.issued2018
dc.date.submitted2019-07-22
dc.identifier.citationAguzzi, A. and M. Polymenidou (2004). 'Mammalian prion biology: One century of evolving concepts.' Cell 116(2): 313-327.
Aguzzi, A., C. Sigurdson and M. Heikenwaelder (2008). 'Molecular mechanisms of prion pathogenesis.' Annual Review of Pathology: Mechanisms of Disease 3(1): 11-40.
Alper, T., W. A. Cramp, D. A. Haig and M. C. Clarke (1967). 'Does the agent of scrapie replicate without nucleic acid ?' Nature 214: 764.
Alvarez-Martinez, M.-T., P. Fontes, V. Zomosa-Signoret, J.-D. Arnaud, E. Hingant, L. Pujo-Menjouet and J.-P. Liautard (2011). 'Dynamics of polymerization shed light on the mechanisms that lead to multiple amyloid structures of the prion protein.' Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814(10): 1305-1317.
Apostol, M. I., J. J. W. Wiltzius, M. R. Sawaya, D. Cascio and D. Eisenberg (2011). 'Atomic structures suggest determinants of transmission barriers in mammalian prion disease.' Biochemistry 50(13): 2456-2463.
Baskakov, I. V., C. Aagaard, I. Mehlhorn, H. Wille, D. Groth, M. A. Baldwin, S. B. Prusiner and F. E. Cohen (2000). 'Self-assembly of recombinant prion protein of 106 residues.' Biochemistry 39(10): 2792-2804.
Bolton, D., M. McKinley and S. Prusiner (1982). 'Identification of a protein that purifies with the scrapie prion.' Science 218(4579): 1309-1311.
Castle, A. R. and A. C. Gill (2017). 'Physiological functions of the cellular prion protein.' Frontiers in Molecular Biosciences 4(19).
Caughey, B. W., A. Dong, K. S. Bhat, D. Ernst, S. F. Hayes and W. S. Caughey (1991). 'Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy.' Biochemistry 30(31): 7672-7680.
Chatterjee, B., C.-Y. Lee, C. Lin, E. H. L. Chen, C.-L. Huang, C.-C. Yang and R. P.-Y. Chen (2013). 'Amyloid core formed of full-length recombinant mouse prion protein involves sequence 127–143 but not sequence 107–126.' PLOS ONE 8(7): e67967.
Cheng, H.-M., Y. C. Huang William, W. T. Tsai Tim, Y. Mou, H. Chao John Chin and C. C. Chan Jerry (2013). 'Depletion of water molecules near the end stage of steric zipper formation.' Journal of the Chinese Chemical Society 60(7): 794-800.
Cheng, H.-M., T. W. T. Tsai, W. Y. C. Huang, H.-K. Lee, H.-Y. Lian, F.-C. Chou, Y. Mou and J. C. C. Chan (2011). 'Steric zipper formed by hydrophobic peptide fragment of Syrian hamster prion protein.' Biochemistry 50(32): 6815-6823.
Chiti, F. and C. M. Dobson (2006). 'Protein Misfolding, Functional Amyloid, and Human Disease.' Annual Review of Biochemistry 75(1): 333-366.
Choi, J.-K., I. Cali, K. Surewicz, Q. Kong, P. Gambetti and W. K. Surewicz (2016). 'Amyloid fibrils from the N-terminal prion protein fragment are infectious.' Proceedings of the National Academy of Sciences of the United States of America 113(48): 13851-13856.
Chuang, C.-C., T.-Y. Liao, E. H. L. Chen and R. P.-Y. Chen (2013). 'How do amino acid substitutions affect the amyloidogenic properties and seeding efficiency of prion peptides.' Amino Acids 45(4): 785-796.
Cobb, N. J., F. D. Sönnichsen, H. Mchaourab and W. K. Surewicz (2007). 'Molecular architecture of human prion protein amyloid: A parallel, in-register β-structure.' Proceedings of the National Academy of Sciences of the United States of America 104(48): 18946-18951.
Cohen, S. I. A., S. Linse, L. M. Luheshi, E. Hellstrand, D. A. White, L. Rajah, D. E. Otzen, M. Vendruscolo, C. M. Dobson and T. P. J. Knowles (2013). 'Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism.' Proceedings of the National Academy of Sciences 110(24): 9758-9763.
Collinge, J. (2001). 'Prion diseases of humans and animals: Their causes and molecular basis.' Annual Review of Neuroscience 24(1): 519-550.
Damo, S. M., A. H. Phillips, A. L. Young, S. Li, V. L. Woods and D. E. Wemmer (2010). 'Probing the conformation of a prion protein fibril with hydrogen exchange.' Journal of Biological Chemistry 285(42): 32303-32311.
Dearmond, S. J., M. P. McKinley, R. A. Barry, M. B. Braunfeld, J. R. McColloch and S. B. Prusinert (1985). 'Identification of prion amyloid filaments in scrapie-infected brain.' Cell 41(1): 221-235.
Dobson, C. M. (2003). 'Protein folding and misfolding.' Nature 426: 884.
Donne, D. G., J. H. Viles, D. Groth, I. Mehlhorn, T. L. James, F. E. Cohen, S. B. Prusiner, P. E. Wright and H. J. Dyson (1997). 'Structure of the recombinant full-length hamster prion protein PrP(29–231): The N terminus is highly flexible.' Proceedings of the National Academy of Sciences of the United States of America 94(25): 13452-13457.
Eichner, T. and Sheena E. Radford (2011). 'A diversity of assembly mechanisms of a generic amyloid fold.' Molecular Cell 43(1): 8-18.
Freire, S., M. H. de Araujo, W. Al-Soufi and M. Novo (2014). 'Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils.' Dyes and Pigments 110: 97-105.
Gajdusek, D. C., C. J. Gibbs jun and M. Alpers (1966). 'Experimental transmission of a kuru-like syndrome to chimpanzees.' Nature 209: 794.
Gasset, M., M. A. Baldwin, D. H. Lloyd, J. M. Gabriel, D. M. Holtzman, F. Cohen, R. Fletterick and S. B. Prusiner (1992). 'Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid.' Proceedings of the National Academy of Sciences of the United States of America 89(22): 10940-10944.
Griffith, J. S. (1967). 'Nature of the scrapie agent: self-replication and scrapie.' Nature 215: 1043.
Grigoryants, V. M., A. V. Veselov and C. P. Scholes (2000). 'Variable velocity liquid flow EPR applied to submillisecond protein folding.' Biophysical Journal 78(5): 2702-2708.
Groveman, B. R., M. A. Dolan, L. M. Taubner, A. Kraus, R. B. Wickner and B. Caughey (2014). 'Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids.' The Journal of Biological Chemistry 289(35): 24129-24142.
Haire, L. F., S. M. Whyte, N. Vasisht, A. C. Gill, C. Verma, E. J. Dodson, G. G. Dodson and P. M. Bayley (2004). 'The crystal atructure of the globular domain of sheep prion protein.' Journal of Molecular Biology 336(5): 1175-1183.
Helmus, J. J., K. Surewicz, P. S. Nadaud, W. K. Surewicz and C. P. Jaroniec (2008). 'Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils.' Proceedings of the National Academy of Sciences of the United States of America 105(17): 6284-6289.
Helmus, J. J., K. Surewicz, W. K. Surewicz and C. P. Jaroniec (2010). 'Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy.' Journal of the American Chemical Society 132(7): 2393-2403.
Henderson, R. (2004). 'Realizing the potential of electron cryo-microscopy.' Quarterly Reviews of Biophysics 37: 3-13.
Ironside, J. W. (2012). 'Variant Creutzfeldt-Jakob disease: an update.' Folia Neuropathologica 50(1): 50-56.
Jarrett, J. T. and P. T. Lansbury (1993). 'Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?' Cell 73(6): 1055-1058.
Jones, E. M. and W. K. Surewicz (2005). 'Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids.' Cell 121(1): 63-72.
Khurana, R., C. Coleman, C. Ionescu-Zanetti, S. A. Carter, V. Krishna, R. K. Grover, R. Roy and S. Singh (2005). 'Mechanism of thioflavin T binding to amyloid fibrils.' Journal of Structural Biology 151(3): 229-238.
King, D. S., C. G. Fields and G. B. Fields (1990). 'A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis.' International Journal of Peptide and Protein Research 36(3): 255-266.
Knaus, K. J., M. Morillas, W. Swietnicki, M. Malone, W. K. Surewicz and V. C. Yee (2001). 'Crystal structure of the human prion protein reveals a mechanism for oligomerization.' Nature Structural Biology 8: 770.
Kneipp, J., L. M. Miller, M. Joncic, M. Kittel, P. Lasch, M. Beekes and D. Naumann (2003). 'In situ identification of protein structural changes in prion-infected tissue.' Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1639(3): 152-158.
Koch, M., P. Vachette and D. I Svergun (2003). 'Small-angle scattering: A view on the properties, structures and structural changes of biological macromolecules in solution.' Quarterly Reviews of Biophysics 36: 147-227.
Krebs, M. R. H., E. H. C. Bromley and A. M. Donald (2005). 'The binding of thioflavin-T to amyloid fibrils: localisation and implications.' Journal of Structural Biology 149(1): 30-37.
Kundu, B., N. R. Maiti, E. M. Jones, K. A. Surewicz, D. L. Vanik and W. K. Surewicz (2003). 'Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein: Structural clues for prion propagation.' Proceedings of the National Academy of Sciences of the United States of America 100(21): 12069-12074.
Kuwata, K., T. Matumoto, H. Cheng, K. Nagayama, T. L. James and H. Roder (2003). 'NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126.' Proceedings of the National Academy of Sciences of the United States of America 100(25): 14790-14795.
Laurent, M. (1996). 'Prion diseases and the 'protein only' hypothesis: a theoretical dynamic study.' Biochemical Journal 318(Part 1): 35-39.
Lee, L. Y. L. and R. P.-Y. Chen (2007). 'Quantifying the sequence-dependent species barrier between hamster and mouse prions.' Journal of the American Chemical Society 129(6): 1644-1652.
Lee, S.-W., Y. Mou, S.-Y. Lin, F.-C. Chou, W.-H. Tseng, C.-H. Chen, C.-Y. D. Lu, S. S. F. Yu and J. C. C. Chan (2008). 'Steric Zipper of the Amyloid Fibrils Formed by Residues 109–122 of the Syrian Hamster Prion Protein.' Journal of Molecular Biology 378(5): 1142-1154.
Lewis, P. A., M. H. Tattum, S. Jones, D. Bhelt, M. Batchelor, A. R. Clarke, J. Collinge and G. S. Jackson (2006). 'Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation.' Journal of General Virology 87(8): 2443-2449.
Lin, N.-S., J. C.-H. Chao, H.-M. Cheng, F.-C. Chou, C.-F. Chang, Y.-R. Chen, Y.-J. Chang, S.-J. Huang and J. C. C. Chan (2010). 'Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein.' Chemistry – A European Journal 16(18): 5492-5499.
Lu, X., P. L. Wintrode and W. K. Surewicz (2007). 'β-Sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange.' Proceedings of the National Academy of Sciences of the United States of America 104(5): 1510-1515.
Mackenzie, G. and R. Will (2017). 'Creutzfeldt-Jakob disease: recent developments.' F1000Research 6: 2053.
Makarava, N., G. G. Kovacs, O. Bocharova, R. Savtchenko, I. Alexeeva, H. Budka, R. G. Rohwer and I. V. Baskakov (2010). 'Recombinant prion protein induces a new transmissible prion disease in wild-type animals.' Acta Neuropathologica 119(2): 177-187.
Margittai, M. and R. Langen (2004). 'Template-assisted filament growth by parallel stacking of tau.' Proceedings of the National Academy of Sciences of the United States of America 101(28): 10278-10283.
McKinley, M. P. and S. B. Prusiner (1986). Biology and structure of scrapie prions. International Review of Neurobiology. J. R. Smythies and R. J. Bradley, Academic Press. 28: 1-57.
Millhauser, G. L. (2007). 'Copper and the prion protein: methods, structures, function, and disease.' Annual Review of Physical Chemistry 58(1): 299-320.
Muramoto, T., M. Scott, F. E. Cohen and S. B. Prusiner (1996). 'Recombinant scrapie-like prion protein of 106 amino acids is soluble.' Proceedings of the National Academy of Sciences of the United States of America 93(26): 15457-15462.
Naiki, H., T. Okoshi, D. Ozawa, I. Yamaguchi and K. Hasegawa (2016). 'Molecular pathogenesis of human amyloidosis: Lessons from β2-microglobulin-related amyloidosis.' Pathology International 66(4): 193-201.
Nick, P. C., V. Felix, F. Lanette, G. Gerald and G. Theronica (1995). 'How to measure and predict the molar absorption coefficient of a protein.' Protein Science 4(11): 2411-2423.
Oesch, B., D. Westaway, M. Wälchli, M. P. McKinley, S. B. H. Kent, R. Aebersold, R. A. Barry, P. Tempst, D. B. Teplow, L. E. Hood, S. B. Prusiner and C. Weissmann (1985). 'A cellular gene encodes scrapie PrP 27-30 protein.' Cell 40(4): 735-746.
Orrú, C. D., J. Yuan, B. S. Appleby, B. Li, Y. Li, D. Winner, Z. Wang, Y.-A. Zhan, M. Rodgers, J. Rarick, R. E. Wyza, T. Joshi, G.-X. Wang, M. L. Cohen, S. Zhang, B. R. Groveman, R. B. Petersen, J. W. Ironside, M. E. Quiñones-Mateu, J. G. Safar, Q. Kong, B. Caughey and W.-Q. Zou (2017). 'Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease.' Science Translational Medicine 9(417): pii: eaam7785.
Pan, K. M., M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z. Huang, R. J. Fletterick and F. E. Cohen (1993). 'Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins.' Proceedings of the National Academy of Sciences of the United States of America 90(23): 10962-10966.
Pastore, A. and A. Zagari (2007). 'A structural overview of the vertebrate prion proteins.' Prion 1(3): 185-197.
Prusiner, S. B. (1982). 'Novel proteinaceous infectious particles cause scrapie.' Science 216(4542): 136-144.
Prusiner, S. B. (1991). 'Molecular biology of prion diseases.' Science 252(5012): 1515-1522.
Prusiner, S. B. (1998). 'Prions.' Proceedings of the National Academy of Sciences of the United States of America 95(23): 13363-13383.
Prusiner, S. B., M. P. McKinley, K. A. Bowman, D. C. Bolton, P. E. Bendheim, D. F. Groth and G. G. Glenner (1983). 'Scrapie prions aggregate to form amyloid-like birefringent rods.' Cell 35(2, Part 1): 349-358.
Puoti, G., A. Bizzi, G. Forloni, J. G. Safar, F. Tagliavini and P. Gambetti (2012). 'Sporadic human prion diseases: molecular insights and diagnosis.' The Lancet Neurology 11(7): 618-628.
Riek, R. and D. S. Eisenberg (2016). 'The activities of amyloids from a structural perspective.' Nature 539: 227.
Riek, R., S. Hornemann, G. Wider, M. Billeter, R. Glockshuber and K. Wüthrich (1996). 'NMR structure of the mouse prion protein domain PrP(121–231).' Nature 382: 180.
Rudd, P. M., T. Endo, C. Colominas, D. Groth, S. F. Wheeler, D. J. Harvey, M. R. Wormald, H. Serban, S. B. Prusiner, A. Kobata and R. A. Dwek (1999). 'Glycosylation differences between the normal and pathogenic prion protein isoforms.' Proceedings of the National Academy of Sciences of the United States of America 96(23): 13044-13049.
Rudd, P. M., M. R. Wormald, D. R. Wing, S. B. Prusiner and R. A. Dwek (2001). 'Prion glycoprotein:  Structure, dynamics, and roles for the sugars.' Biochemistry 40(13): 3759-3766.
Sawyer, Elizabeth B., D. Claessen, Sally L. Gras and S. Perrett (2012). 'Exploiting amyloid: how and why bacteria use cross-β fibrils.' Biochemical Society Transactions 40(4): 728-734.
Sipe, J. D., M. D. Benson, J. N. Buxbaum, S.-i. Ikeda, G. Merlini, M. J. M. Saraiva and P. Westermark (2014). 'Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis.' Amyloid 21(4): 221-224.
Sipe, J. D. and A. S. Cohen (2000). 'Review: History of the amyloid fibril.' Journal of Structural Biology 130(2): 88-98.
Stopar, D., J. Štrancar, R. B. Spruijt and M. A. Hemminga (2005). 'Exploring the local conformational space of a membrane protein by site-directed spin labeling.' Journal of Chemical Information and Modeling 45(6): 1621-1627.
Török, M., S. Milton, R. Kayed, P. Wu, T. McIntire, C. G. Glabe and R. Langen (2002). 'Structural and dynamic features of Alzheimer's Aβ peptide in amyloid fibrils studied by site-directed spin labeling.' Journal of Biological Chemistry 277(43): 40810-40815.
Tagliavini, F., F. Prelli, L. Verga, G. Giaccone, R. Sarma, P. Gorevic, B. Ghetti, F. Passerini, E. Ghibaudi and G. Forloni (1993). 'Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro.' Proceedings of the National Academy of Sciences of the United States of America 90(20): 9678-9682.
Theint, T., P. S. Nadaud, D. Aucoin, J. J. Helmus, S. P. Pondaven, K. Surewicz, W. K. Surewicz and C. P. Jaroniec (2017). 'Species-dependent structural polymorphism of Y145Stop prion protein amyloid revealed by solid-state NMR spectroscopy.' Nature Communications 8(1): 753.
Turk, E., D. B. Teplow, L. E. Hood and S. B. Prusiner (1988). 'Purification and properties of the cellular and scrapie hamster prion proteins.' European Journal of Biochemistry 176(1): 21-30.
Tycko, R., R. Savtchenko, V. G. Ostapchenko, N. Makarava and I. V. Baskakov (2010). 'The α-Helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel β-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance.' Biochemistry 49(44): 9488-9497.
Vanik, D. L., K. A. Surewicz and W. K. Surewicz (2004). 'Molecular basis of barriers for interspecies transmissibility of mammalian prions.' Molecular Cell 14(1): 139-145.
Vázquez-Fernández, E., M. R. Vos, P. Afanasyev, L. Cebey, A. M. Sevillano, E. Vidal, I. Rosa, L. Renault, A. Ramos, P. J. Peters, J. J. Fernández, M. van Heel, H. S. Young, J. R. Requena and H. Wille (2016). 'The structural architecture of an infectious mammalian prion using electron cryomicroscopy.' PLOS Pathogens 12(9): e1005835.
Walsh, P., K. Simonetti and S. Sharpe (2009). 'Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.' Structure (London, England : 1993) 17(3): 417-426.
Wang, F., X. Wang, C.-G. Yuan and J. Ma (2010). 'Generating a prion with bacterially expressed recombinant prion protein.' Science 327(5969): 1132-1135.
Wang, Y. and K. Hall Carol (2018). 'Seeding and cross-seeding fibrillation of N-terminal prion protein peptides PrP(120–144).' Protein Science 27(7): 1304-1313.
Wang, Y., Q. Shao and C. K. Hall (2016). 'N-terminal prion protein peptides (PrP(120–144)) form parallel in-register β-sheets via multiple nucleation-dependent pathways.' Journal of Biological Chemistry 291(42): 22093-22105.
Weissmann, C. (2004). 'The state of the prion.' Nature Reviews Microbiology 2: 861.
Wopfner, F., G. Weidenhöfer, R. Schneider, A. von Brunn, S. Gilch, T. F. Schwarz, T. Werner and H. M. Schätzl (1999). 'Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein.' Journal of Molecular Biology 289(5): 1163-1178.
Wuthrich, K. and R. Riek (2001). 'Three-dimensional structures of prion proteins.' Advances in Protein Chemistry 57: 55-82.
Xue, W.-F., S. W. Homans and S. E. Radford (2008). 'Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly.' Proceedings of the National Academy of Sciences of the United States of America 105(26): 8926-8931.
Yamaguchi, K.-i. and K. Kuwata (2017). 'Formation and properties of amyloid fibrils of prion protein.' Biophysical Reviews 10: 517-525.
Yamaguchi, K.-i., T. Matsumoto and K. Kuwata (2008). 'Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.' Biochemistry 47(50): 13242-13251.
Yang, C., W.-L. Lo, Y.-H. Kuo, J. C. Sang, C.-Y. Lee, Y.-W. Chiang and R. P.-Y. Chen (2015). 'Revealing structural changes of prion protein during conversion from α-helical monomer to β-oligomers by means of ESR and nanochannel encapsulation.' ACS Chemical Biology 10(2): 493-501.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7300-
dc.description.abstract普立昂蛋白原是位於神經細胞外膜上的醣蛋白,正常形態 (PrPC) 的結構以 α-螺旋為主,當結構上轉變為 β 結構為主之致病形態 (PrPSc) 時,會不正常聚集而堆疊為類澱粉纖維,此種形式的普立昂蛋白會造成腦細胞死亡,產生海綿樣組織空洞,最後導致死亡。目前仍不清楚普立昂蛋白進行結構轉變時,究竟是結構中的哪一段形成分子間 β 結構,本論文即探討普立昂胜肽形成的類澱粉纖維之堆疊特性及與其胺基酸序列的關係。
本論文使用敘利亞倉鼠之胜肽片段(序列108-144)為實驗材料,選取七個疏水性、非極性之胺基酸為接上自旋標記的位置,於胜肽合成時以半胱胺酸替代。以高效液相層析儀純化胜肽後,在半胱胺酸支鏈接上具有自由基電子的甲烷硫磺酸基團 MTSSL 自旋標記,再利用野生型普立昂胜肽形成的類澱粉纖維為晶種,誘發帶有自旋標記的胜肽形成類澱粉纖維,最後利用電子自旋共振技術解析各標記位點之間的訊號強度推斷出相對距離,來探討普立昂胜肽形成類澱粉纖維後之結構特性。另外本論文也利用穿透式電子顯微鏡技術檢視普立昂胜肽形成之類澱粉纖維,以確認類澱粉纖維是否成功生成。
電子自旋共振的結果顯示,具有不同替代位點的胜肽之間其結構差異非常明顯。在自發性生長的類澱粉纖維之光譜中,其代表電子間訊號強度之線寬大致可排序為:A118R1 ≈ V121R1 > M134R1 ≈ L125R1 > A113R1 > M129R1 ≈ M138R1;而在晶種誘發生長組別的光譜中,除位點 M129R1 外,其曲線形狀均較為寬胖。以此結果我們推斷,在胜肽片段 108-144 中,可能存在兩個結構較為緊密的澱粉樣核心區,分別位於A113 與 L125 以及 M134 與 M138 之間。在兩個澱粉樣核心區之間,縱然 M129 周圍區域的結構較為鬆散,卻可能對整體澱粉樣纖維結構產生決定性的影響。從倉鼠普立昂胜肽的實驗出發,我們希望可以解開普立昂蛋白結構上的堆疊關鍵區域,再進一步推展到人類普立昂蛋白上,以便作為未來疾病治療、預防與藥物開發之依據。
zh_TW
dc.description.abstractPrion protein is a glycoprotein anchored on the membrane of neuron cells. The normal, cellular form (PrPC) is rich in α-helices. When PrPC is transformed to disease-causing form (PrPSc), β structures appear to dominate in prion protein. PrPSc is prone to association, leading to the formation of amyloid fibrils. This aggregation form of prion protein can induce neuronal death in the brain, which results in sponge-like holes, and finally lead to fatal consequence.
Little is known about the core regions where the structural conversion takes place and form intermolecular β structure (also known as cross-β structure). Our study aims to provide an insight in the structural features of the prion amyloid fibrils and the relationship with its amino acid sequence. Prion peptide (residue 108-144) from Syrian hamster is used as our target in this study. Seven hydrophobic, non-polar amino acid residues were picked out for substitution to cysteine in each mutant peptide respectively, serving as the spin labeling sites. The wild-type and mutant peptides were synthesized by solid-phase peptide synthesis and purified by HPLC. The mutant peptides were then labeled with MTSSL, featuring its methane thiosulfonate group and radical spin, on the side chain of cysteine residues (site-directed spin labeling). The spin-labeled peptide monomers were induced to form amyloid fibrils with or without adding seeds, which were prepared from the wild-type amyloid fibrils. The spin-labeled amyloid fibrils were further analyzed by electron spin resonance (ESR) spectroscopy for obtaining the information of relative proximity between spins. The morphologies of the amyloid fibrils were also examined by TEM to confirm the presence of fibrils.
Our ESR results revealed distinct features between peptides of different mutated sites. In the spectrograms of spontaneously formed fibrils, the linewidths could be ranked as A118R1 ≈ V121R1 > M134R1 ≈ L125R1 > A113R1 > M129R1 ≈ M138R1, and the curves of seeded fibrils were all relatively broadened except for M129R1. It is assumed that there might be two amyloid cores within the peptide 108-144, ranging from A113 to L125 and from M134 to M138 respectively. Between these two cores the residues around M129 stood out as a key region, which might be loose in structure but packed between the two cores. Our study can provide useful information to explain the location of the amyloid core in the process of prion protein propagation, and we hope to develop drugs against prion disease progression.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:41:11Z (GMT). No. of bitstreams: 1
ntu-107-R05B22061-1.pdf: 16201550 bytes, checksum: 04c7b38bec84d129d085c251ca455195 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝辭 i
中文摘要 iii
Abstract iv
Abbreviations vi

Chapter 1 Introduction 1
1.1 Introduction to prion disease 1
1.2 The structure of prion protein 7
1.3 The amyloidogenesis of prion protein 11
1.4 Critical regions of PrP in amyloidogenesis 15
1.5 Previous studies of prion protein structure by ESR 24
1.6 Aim of this thesis 29
Chapter 2 Materials and Methods 31
2.1 Materials 31
2.1.1 Water 31
2.1.2 Chemicals 31
2.1.3 Laboratory instruments 34
2.2 Methods 37
2.2.1 Solid-phase peptide synthesis 37
2.2.2 Peptide purification and identification 39
2.2.3 MTSSL spin labeling, purification, and identification of peptide 40
2.2.4 Amyloid fibril formation 41
2.2.5 Seed preparation and the seeding assay 42
2.2.6 ThT binding assay in amyloidogenesis 43
2.2.7 TEM observation of fibril morphology 45
2.2.8 Sample preparation for ESR spectroscopy measurement 45
2.2.9 ESR spectroscopy measurement 46
2.2.10 Data analysis 46
Chapter 3 Results (I): Sample Preparation 47
3.1 Synthesis, purification, and identification of peptides 47
3.1.1 Overview 47
3.1.2 HPLC purification of peptides 49
3.1.3 Identification of peptides 51
3.2 MTSSL labeling, purification, and identification of peptides 54
3.2.1 Overview 54
3.2.2 HPLC purification of labeled peptides 55
3.2.3 Identification of labeled peptides 59
Chapter 4 Results (II): Amyloid Fibril Formation 63
4.1 Spontaneous fibril formation of HaPrP peptides 64
4.2 Seeded fibril formation of HaPrP peptides 77
Chapter 5 Results (III): TEM & ESR Spectroscopy 91
5.1 Fibril morphology observation by TEM 91
5.1.1 Morphology of spontaneously formed fibrils 92
5.1.2 Morphology of fibrils formed by seeding 97
5.2 ESR spectroscopy 104
Chapter 6 Discussion 111
6.1 Overview 111
6.2 Sample preparation (Chapter 3) 112
6.3 Amyloid fibril formation (Chapter 4) 114
6.4 TEM & ESR spectroscopy (Chapter 5) 117
Chapter 7 Conclusions and Future works 123

References 127
Appendixes 137
dc.language.isoen
dc.title以電子自旋共振光譜分析敘利亞倉鼠普立昂胜肽序列 108-144 類澱粉纖維之結構特性zh_TW
dc.titleStructural Analysis of the Amyloid Fibrils Formed of
Syrian Hamster Prion Peptide (108-144) by Using
Electron Spin Resonance Spectroscopy
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor陳佩燁(Rita Pei-Yeh Chen)
dc.contributor.oralexamcommittee陳振中(Jerry Chun Chung Chan),江昀緯(Yun-Wei Chiang)
dc.subject.keyword普立昂疾病,澱粉樣纖維,倉鼠普立昂胜?,澱粉樣核心區,位點取向自旋標記,電子自旋共振光譜,zh_TW
dc.subject.keywordamyloid fibrils,hamster prion peptide,amyloid core,cross-β structure,site-directed spin labeling,ESR spectroscopy,en
dc.relation.page151
dc.identifier.doi10.6342/NTU201901703
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf15.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved