Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72997
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾文毅
dc.contributor.authorTao-Han Hungen
dc.contributor.author洪道涵zh_TW
dc.date.accessioned2021-06-17T07:13:16Z-
dc.date.available2021-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-07-17
dc.identifier.citationAlbert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., . . . Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 270-279. doi:10.1016/j.jalz.2011.03.008
Archer, D. B., Vaillancourt, D. E., & Coombes, S. A. (2018). A Template and Probabilistic Atlas of the Human Sensorimotor Tracts using Diffusion MRI. Cereb Cortex, 28(5), 1685-1699. doi:10.1093/cercor/bhx066
Backman, L., Jones, S., Berger, A. K., Laukka, E. J., & Small, B. J. (2004). Multiple cognitive deficits during the transition to Alzheimer's disease. J Intern Med, 256(3), 195-204. doi:10.1111/j.1365-2796.2004.01386.x
Bai, F., Zhang, Z., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., . . . Jia, J. (2009). Abnormal integrity of association fiber tracts in amnestic mild cognitive impairment. J Neurol Sci, 278(1-2), 102-106. doi:10.1016/j.jns.2008.12.009
Bartzokis, G. (2004). Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging, 25(1), 5-18.
Bartzokis, G., Cummings, J. L., Sultzer, D., Henderson, V. W., Nuechterlein, K. H., & Mintz, J. (2003). White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol, 60(3), 393-398.
Bartzokis, G., Sultzer, D., Lu, P. H., Nuechterlein, K. H., Mintz, J., & Cummings, J. L. (2004). Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiol Aging, 25(7), 843-851.
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci, 17(10), 502-509. doi:10.1016/j.tics.2013.08.012
Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images. NMR in Biomedicine, 8(7), 333-344.
Bennett, D. A., Wilson, R. S., Schneider, J. A., Evans, D. A., Beckett, L. A., Aggarwal, N. T., . . . Bach, J. (2002). Natural history of mild cognitive impairment in older persons. Neurology, 59(2), 198-205.
Bobinski, M., De Leon, M. J., Convit, A., De Santi, S., Wegiel, J., Tarshish, C. Y., . . . Wisniewski, H. M. (1999). MRI of entorhinal cortex in mild Alzheimer's disease. The Lancet, 353(9146), 38-40.
Bowen, J., Teri, L., Kukull, W., McCormick, W., McCurry, S. M., & Larson, E. B. (1997). Progression to dementia in patients with isolated memory loss. The Lancet, 349(9054), 763-765.
Brambati, S. M., Belleville, S., Kergoat, M. J., Chayer, C., Gauthier, S., & Joubert, S. (2009). Single- and multiple-domain amnestic mild cognitive impairment: two sides of the same coin? Dement Geriatr Cogn Disord, 28(6), 541-549. doi:10.1159/000255240
Bronge, L., Bogdanovic, N., & Wahlund, L.-O. (2002). Postmortem MRI and histopathology of white matter changes in Alzheimer brains. Dement Geriatr Cogn Disord, 13(4), 205-212.
Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., & Brammer, M. J. (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging, 18(1), 32-42.
Busatto, G. F., Garrido, G. E., Almeida, O. P., Castro, C. C., Camargo, C. H., Cid, C. G., . . . Bottino, C. M. (2003). A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease. Neurobiol Aging, 24(2), 221-231.
Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2004). Modified Card Sorting Test: normative data. J Clin Exp Neuropsychol, 26(2), 246-250. doi:10.1076/jcen.26.2.246.28087
Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., & Zelaya, F. O. (1991). Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature, 351(6326), 467.
Callen, D., Black, S. E., Gao, F., Caldwell, C., & Szalai, J. (2001). Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology, 57(9), 1669-1674.
Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol, 287(4), 393-421. doi:10.1002/cne.902870402
Chang, Y. L., Chen, T. F., Shih, Y. C., Chiu, M. J., Yan, S. H., & Tseng, W. Y. (2015). Regional cingulum disruption, not gray matter atrophy, detects cognitive changes in amnestic mild cognitive impairment subtypes. J Alzheimers Dis, 44(1), 125-138. doi:10.3233/jad-141839
Chen, Y. J., Lo, Y. C., Hsu, Y. C., Fan, C. C., Hwang, T. J., Liu, C. M., . . . Tseng, W. Y. (2015). Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp, 36(9), 3441-3458. doi:10.1002/hbm.22854
Chetelat, G., & Baron, J. C. (2003). Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging. Neuroimage, 18(2), 525-541.
Chica, A. B., Bartolomeo, P., & Lupianez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res, 237, 107-123. doi:10.1016/j.bbr.2012.09.027
Cho, H., Yang, D. W., Shon, Y. M., Kim, B. S., Kim, Y. I., Choi, Y. B., . . . Kim, W. (2008). Abnormal integrity of corticocortical tracts in mild cognitive impairment: a diffusion tensor imaging study. Journal of Korean medical science, 23(3), 477-483.
Chua, T. C., Wen, W., Chen, X., Kochan, N., Slavin, M. J., Trollor, J. N., . . . Sachdev, P. S. (2009). Diffusion tensor imaging of the posterior cingulate is a useful biomarker of mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17(7), 602-613.
Convit, A., De Leon, M., Tarshish, C., De Santi, S., Tsui, W., Rusinek, H., & George, A. (1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging, 18(2), 131-138.
Cox, S. R., Ritchie, S. J., Tucker-Drob, E. M., Liewald, D. C., Hagenaars, S. P., Davies, G., . . . Deary, I. J. (2016). Ageing and brain white matter structure in 3,513 UK Biobank participants. Nat Commun, 7, 13629. doi:10.1038/ncomms13629
Daly, E., Zaitchik, D., Copeland, M., Schmahmann, J., Gunther, J., & Albert, M. (2000). Predicting conversion to Alzheimer disease using standardized clinical information. Archives of neurology, 57(5), 675-680.
Daly, E., Zaitchik, D., Copeland, M., Schmahmann, J., Gunther, J., & Albert, M. (2000). Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol, 57(5), 675-680.
Diaz-Mardomingo, M. D. C., Garcia-Herranz, S., Rodriguez-Fernandez, R., Venero, C., & Peraita, H. (2017). Problems in Classifying Mild Cognitive Impairment (MCI): One or Multiple Syndromes? Brain Sci, 7(9). doi:10.3390/brainsci7090111
Fellgiebel, A., Müller, M. J., Wille, P., Dellani, P. R., Scheurich, A., Schmidt, L. G., & Stoeter, P. (2005). Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging, 26(8), 1193-1198.
Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., . . . Tragl, K. H. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68(4), 288-291. doi:10.1212/01.wnl.0000252358.03285.9d
Friederici, A. D. (2009). Pathways to language: fiber tracts in the human brain. Trends Cogn Sci, 13(4), 175-181. doi:10.1016/j.tics.2009.01.001
Fritzsche, K. H., Laun, F. B., Meinzer, H. P., & Stieltjes, B. (2010). Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging? Neuroimage, 51(1), 242-251. doi:10.1016/j.neuroimage.2010.02.007
Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., . . . Winblad, B. (2006). Mild cognitive impairment. Lancet, 367(9518), 1262-1270. doi:10.1016/s0140-6736(06)68542-5
Greenaway, M. C., Duncan, N. L., Hanna, S., & Smith, G. E. (2012). Predicting functional ability in mild cognitive impairment with the Dementia Rating Scale-2. Int Psychogeriatr, 24(6), 987-993. doi:10.1017/s1041610211002717
Gregory, S., Long, J. D., Tabrizi, S. J., & Rees, G. (2017). Measuring compensation in neurodegeneration using MRI. Curr Opin Neurol, 30(4), 380-387. doi:10.1097/wco.0000000000000469
Guan, H., Liu, T., Jiang, J., Tao, D., Zhang, J., Niu, H., . . . Wen, W. (2017). Classifying MCI Subtypes in Community-Dwelling Elderly Using Cross-Sectional and Longitudinal MRI-Based Biomarkers. Front Aging Neurosci, 9, 309. doi:10.3389/fnagi.2017.00309
He, J., Farias, S., Martinez, O., Reed, B., Mungas, D., & Decarli, C. (2009). Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. Arch Neurol, 66(11), 1393-1399. doi:10.1001/archneurol.2009.252
He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci, 28(18), 4756-4766. doi:10.1523/jneurosci.0141-08.2008
He, Y., Chen, Z., Gong, G., & Evans, A. (2009). Neuronal networks in Alzheimer's disease. Neuroscientist, 15(4), 333-350. doi:10.1177/1073858409334423
Hsu, Y. C., Hsu, C. H., & Tseng, W. Y. (2012). A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. Neuroimage, 63(2), 818-834. doi:10.1016/j.neuroimage.2012.07.033
Hsu, Y. C., Lo, Y. C., Chen, Y. J., Wedeen, V. J., & Isaac Tseng, W. Y. (2015). NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum Brain Mapp, 36(9), 3528-3541. doi:10.1002/hbm.22860
Hua, BS, C., KN, L., JM, Y., SR, L., & HY, C. (2005). Wechsler Memory Scale (WMS), Third Edition. The Chinese Behavioral Science Corporation., Taipei, Taiwan.
Hua, M. S., Chang, S. H., & Chen, S. T. (1997). Factor structure and age effects with an aphasia test battery in normal Taiwanese adults. Neuropsychology, 11(1), 156-162.
HY, C., & RH, C. (2002). Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Manual for Taiwan. The Chinese Behavioral Science Corporation, Taipei, Taiwan.
Jack, C. R., Jr., Petersen, R. C., Xu, Y. C., Waring, S. C., O'Brien, P. C., Tangalos, E. G., . . . Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 49(3), 786-794. doi:10.1212/wnl.49.3.786
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am J Geriatr Psychiatry, 17(5), 368-375. doi:10.1097/JGP.0b013e31819431d5
Jak, A. J., Urban, S., McCauley, A., Bangen, K. J., Delano-Wood, L., Corey-Bloom, J., & Bondi, M. W. (2009). Profile of hippocampal volumes and stroke risk varies by neuropsychological definition of mild cognitive impairment. J Int Neuropsychol Soc, 15(6), 890-897. doi:10.1017/s1355617709090638
Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., & Milham, M. P. (2012). A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage, 61(4), 1129-1142. doi:10.1016/j.neuroimage.2012.03.021
Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., . . . Evans, A. C. (2013). Developmental changes in organization of structural brain networks. Cereb Cortex, 23(9), 2072-2085. doi:10.1093/cercor/bhs187
Kuo, L. W., Chen, J. H., Wedeen, V. J., & Tseng, W. Y. (2008). Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage, 41(1), 7-18. doi:10.1016/j.neuroimage.2008.02.016
Li, H., Liang, Y., Chen, K., Li, X., Shu, N., Zhang, Z., & Wang, Y. (2013). Different patterns of white matter disruption among amnestic mild cognitive impairment subtypes: relationship with neuropsychological performance. J Alzheimers Dis, 36(2), 365-376. doi:10.3233/jad-122023
Li, X., & Zhang, Z. J. (2015). Neuropsychological and neuroimaging characteristics of amnestic mild cognitive impairment subtypes: a selective overview. CNS Neurosci Ther, 21(10), 776-783. doi:10.1111/cns.12391
Li, X., Zheng, L., Zhang, J., Zhou, X., Ma, C., Chen, Y., . . . Zhang, Z. (2013). Differences in functional brain activation and hippocampal volume among amnestic mild cognitive impairment subtypes. Curr Alzheimer Res, 10(10), 1080-1089.
Loewenstein, D. A., Acevedo, A., Small, B. J., Agron, J., Crocco, E., & Duara, R. (2009). Stability of different subtypes of mild cognitive impairment among the elderly over a 2- to 3-year follow-up period. Dement Geriatr Cogn Disord, 27(5), 418-423. doi:10.1159/000211803
Lopez, O. L., Jagust, W. J., DeKosky, S. T., Becker, J. T., Fitzpatrick, A., Dulberg, C., . . . Kuller, L. H. (2003). Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol, 60(10), 1385-1389. doi:10.1001/archneur.60.10.1385
Makris, N., Worth, A., Papadimitriou, G., Stakes, J., Caviness, V., Kennedy, D., . . . Wu, O. (1997). Morphometry of in vivo human white matter association pathways with diffusion‐weighted magnetic resonance imaging. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 42(6), 951-962.
Mechelli, A., Friston, K. J., Frackowiak, R. S., & Price, C. J. (2005). Structural covariance in the human cortex. J Neurosci, 25(36), 8303-8310. doi:10.1523/jneurosci.0357-05.2005
Medina, D., Urresta, F., Gabrieli, J. D., Moseley, M., Fleischman, D., Bennett, D. A., . . . Stebbins, G. T. (2006). White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol Aging, 27(5), 663-672.
Metzler-Baddeley, C., Jones, D. K., Belaroussi, B., Aggleton, J. P., & O'Sullivan, M. J. (2011). Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. J Neurosci, 31(37), 13236-13245. doi:10.1523/jneurosci.2317-11.2011
Ngo, C. T., Alm, K. H., Metoki, A., Hampton, W., Riggins, T., Newcombe, N. S., & Olson, I. R. (2017). White matter structural connectivity and episodic memory in early childhood. Dev Cogn Neurosci, 28, 41-53. doi:10.1016/j.dcn.2017.11.001
Ott, A., Breteler, M. M., van Harskamp, F., Stijnen, T., & Hofman, A. (1998). Incidence and risk of dementia. The Rotterdam Study. Am J Epidemiol, 147(6), 574-580. doi:10.1093/oxfordjournals.aje.a009489
Panza, F., D'Introno, A., Colacicco, A. M., Capurso, C., Del Parigi, A., Caselli, R. J., . . . Solfrizzi, V. (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. Am J Geriatr Psychiatry, 13(8), 633-644. doi:10.1176/appi.ajgp.13.8.633
Papoutsi, M., Labuschagne, I., Tabrizi, S. J., & Stout, J. C. (2014). The cognitive burden in Huntington's disease: pathology, phenotype, and mechanisms of compensation. Mov Disord, 29(5), 673-683. doi:10.1002/mds.25864
Petersen, R. (2004). Mild cognitive impairment. Continuum. Dementia, 10, 9-28.
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. J Intern Med, 256(3), 183-194. doi:10.1111/j.1365-2796.2004.01388.x
Petersen, R. C. (2007). Mild cognitive impairment: current research and clinical implications. Semin Neurol, 27(1), 22-31. doi:10.1055/s-2006-956752
Petersen, R. C. (2009). Early diagnosis of Alzheimer's disease: is MCI too late? Curr Alzheimer Res, 6(4), 324-330.
Petersen, R. C., & Negash, S. (2008). Mild cognitive impairment: an overview. CNS Spectr, 13(1), 45-53.
Petersen, R. C., & Negash, S. (2014). Mild Cognitive Impairment: An Overview. CNS Spectr, 13(1), 45-53. doi:10.1017/s1092852900016151
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Kokmen, E., & Tangelos, E. G. (1997). Aging, memory, and mild cognitive impairment. Int Psychogeriatr, 9(S1), 65-69.
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch Neurol, 56(3), 303-308.
Raznahan, A., Lerch, J. P., Lee, N., Greenstein, D., Wallace, G. L., Stockman, M., . . . Giedd, J. N. (2011). Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron, 72(5), 873-884. doi:10.1016/j.neuron.2011.09.028
Reese, T. G., Heid, O., Weisskoff, R. M., & Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med, 49(1), 177-182. doi:10.1002/mrm.10308
Roberts, R. O., Geda, Y. E., Knopman, D. S., Cha, R. H., Pankratz, V. S., Boeve, B. F., . . . Petersen, R. C. (2012). The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging. Neurology, 78(5), 342-351. doi:10.1212/WNL.0b013e3182452862
Roberts, R. O., Knopman, D. S., Mielke, M. M., Cha, R. H., Pankratz, V. S., Christianson, T. J., . . . Petersen, R. C. (2014). Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology, 82(4), 317-325. doi:10.1212/wnl.0000000000000055
Rose, S. E., McMahon, K. L., Janke, A. L., O’Dowd, B., de Zubicaray, G., Strudwick, M. W., & Chalk, J. B. (2006). Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. Journal of Neurology, Neurosurgery & Psychiatry, 77(10), 1122-1128.
Rosenberg, P. B., Mielke, M. M., Appleby, B., Oh, E., Leoutsakos, J. M., & Lyketsos, C. G. (2011). Neuropsychiatric symptoms in MCI subtypes: the importance of executive dysfunction. Int J Geriatr Psychiatry, 26(4), 364-372. doi:10.1002/gps.2535
Saunders, N. L., & Summers, M. J. (2011). Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology, 25(2), 237-248. doi:10.1037/a0021134
Scheller, E., Minkova, L., Leitner, M., & Kloppel, S. (2014). Attempted and successful compensation in preclinical and early manifest neurodegeneration - a review of task FMRI studies. Front Psychiatry, 5, 132. doi:10.3389/fpsyt.2014.00132
Schmitter-Edgecombe, M., & Parsey, C. M. (2014). Cognitive correlates of functional abilities in individuals with mild cognitive impairment: comparison of questionnaire, direct observation, and performance-based measures. Clin Neuropsychol, 28(5), 726-746. doi:10.1080/13854046.2014.911964
Seo, S. W., Im, K., Lee, J. M., Kim, Y. H., Kim, S. T., Kim, S. Y., . . . Na, D. L. (2007). Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage, 36(2), 289-297. doi:10.1016/j.neuroimage.2007.02.042
Seshadri, S., Beiser, A., Au, R., Wolf, P. A., Evans, D. A., Wilson, R. S., . . . Chui, H. C. (2011). Operationalizing diagnostic criteria for Alzheimer's disease and other age-related cognitive impairment-Part 2. Alzheimers Dement, 7(1), 35-52. doi:10.1016/j.jalz.2010.12.002
Sharda, M., Khundrakpam, B. S., Evans, A. C., & Singh, N. C. (2016). Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct, 221(2), 1017-1032. doi:10.1007/s00429-014-0953-z
Stoub, T., Bulgakova, M., Wilson, R., Bennett, D., Leurgans, S., Wuu, J., & Turner, D. (2004). MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging, 25(9), 1197-1203.
Sullivan, M., Morrell, F., Wilson, R., Bennett, D., & Spencer, S. (1997). Alzheimer’s disease: in vivo detection of differential vulnerability of brain regions. Neurobiol Aging, 18(5), 463-468.
Tabert, M. H., Manly, J. J., Liu, X., Pelton, G. H., Rosenblum, S., Jacobs, M., . . . Devanand, D. P. (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry, 63(8), 916-924. doi:10.1001/archpsyc.63.8.916
Takagi, T., Nakamura, M., Yamada, M., Hikishima, K., Momoshima, S., Fujiyoshi, K., . . . Okano, H. (2009). Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage, 44(3), 884-892. doi:10.1016/j.neuroimage.2008.09.022
Teng, E., Lu, P. H., & Cummings, J. L. (2007). Deficits in facial emotion processing in mild cognitive impairment. Dement Geriatr Cogn Disord, 23(4), 271-279. doi:10.1159/000100829
Tuch, D. S. (2004). Q-ball imaging. Magn Reson Med, 52(6), 1358-1372. doi:10.1002/mrm.20279
Uluğ, A. M., Moore, D. F., Bojko, A. S., & Zimmerman, R. D. (1999). Clinical use of diffusion-tensor imaging for diseases causing neuronal and axonal damage. American journal of neuroradiology, 20(6), 1044-1048.
Visser, P. J., Kester, A., Jolles, J., & Verhey, F. (2006). Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology, 67(7), 1201-1207. doi:10.1212/01.wnl.0000238517.59286.c5
Wang, Z., Liang, P., Jia, X., Qi, Z., Yu, L., Yang, Y., . . . Li, K. (2011). Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J Neurol Sci, 309(1-2), 79-85. doi:10.1016/j.jns.2011.07.017
Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., . . . de Crespigny, A. J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 1267-1277. doi:10.1016/j.neuroimage.2008.03.036
Whitwell, J. L., Petersen, R. C., Negash, S., Weigand, S. D., Kantarci, K., Ivnik, R. J., . . . Jack, C. R., Jr. (2007). Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol, 64(8), 1130-1138. doi:10.1001/archneur.64.8.1130
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., . . . Petersen, R. C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med, 256(3), 240-246. doi:10.1111/j.1365-2796.2004.01380.x
Yaffe, K., Petersen, R. C., Lindquist, K., Kramer, J., & Miller, B. (2006). Subtype of mild cognitive impairment and progression to dementia and death. Dement Geriatr Cogn Disord, 22(4), 312-319. doi:10.1159/000095427
Yeh, F. C., Wedeen, V. J., & Tseng, W. Y. (2011). Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage, 55(3), 1054-1062. doi:10.1016/j.neuroimage.2010.11.087
Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2014). Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88, 79-90. doi:10.1016/j.neuroimage.2013.11.027
Zhang, H., Sachdev, P. S., Wen, W., Kochan, N. A., Crawford, J. D., Brodaty, H., . . . Trollor, J. N. (2012). Gray matter atrophy patterns of mild cognitive impairment subtypes. J Neurol Sci, 315(1-2), 26-32. doi:10.1016/j.jns.2011.12.011
Zhang, Y., Schuff, N., Jahng, G.-H., Bayne, W., Mori, S., Schad, L., . . . Yaffe, K. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68(1), 13-19.
Zhen, D., Xia, W., Yi, Z. Q., Zhao, P. W., Zhong, J. G., Shi, H. C., . . . Pan, P. L. (2018). Alterations of brain local functional connectivity in amnestic mild cognitive impairment. Transl Neurodegener, 7, 26. doi:10.1186/s40035-018-0134-8
Zhou, Y., Dougherty Jr, J. H., Hubner, K. F., Bai, B., Cannon, R. L., & Hutson, R. K. (2008). Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimer's & Dementia, 4(4), 265-270.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72997-
dc.description.abstract研究目的:
遺忘型輕度認知障礙被認為有很高的機率會轉換成阿茲海默症,且它能夠再細分成遺忘型單認知域及遺忘型多認知域的輕度認知功能障礙。當病患的認知功能中只有情境記憶受損,則被歸類為遺忘型單認知域輕度認知功能障礙,如果除了情境記憶外還有其他認知功能受損,則歸類為遺忘型多認知域輕度認知功能障礙。過去的文獻當中,已經有很多核磁共振的研究發現在神經性退化疾病存在著代償機制,聲稱包括阿茲海默症和輕度認知功能障礙在內的許多疾病都有很明顯的代償機制。相對的,很少有文獻探討遺忘型輕度認知障礙的代償機制,特別是遺忘型單認知域及遺忘型多認知域的輕度認知功能障礙。在本研究當中,我們透過比較神經纖維之共變性變化矩陣 (tract covariance matrix) 來檢驗遺忘型單認知域輕度認知功能障礙白質成功的代償機制,遺忘型多認知域輕度認知功能障礙白質不成功的代償機制之假設,我們更進一步地去探討與許多關鍵認知任務相關的網路,包含情境記憶、語言、感覺運動和注意力網路。
研究方法:
我們招收28名健康老人、25名遺忘型單認知域輕度認知功能障礙與22名遺忘型多認知域輕度認知功能障礙,輕度認知功能障礙的診斷是基於國際工作組織,並且基於先前的研究評估認知功能變化。我們於3T磁振造影儀進行75位受試者之T1 權重結構影像(T1WI)與擴散頻譜影像(diffusion spectrum imaging, DSI) 掃描,觀察大腦白質神經纖維束之水分子擴散特性,計算水分子在白質神經纖維中之非等向性指標(generalized fractional anisotropy, GFA),透過全腦基於神經束之自動化分析(Tract-based automatic analysis, TBAA)來擷取全腦主要76條神經纖維束之GFA值,我們平均每條神經纖維束之路徑上的GFA值後進行神經纖維束之共變性分析來得到神經纖維之共變性變化矩陣。神經纖維束之共變性是使用淨相關(partial correlation)的方法控制年齡、性別和Fazekas scale之影響後,進行76條神經纖維束中任意兩條在同一群體受試者之間之共變性分析。接著,我們利用隨機排列統計檢定(random permutation statistics)找出組間神經纖維之共變性變化矩陣間的差異(p<0.01),並更進一步找出與情境記憶、語言、感覺運動和注意力網路相關之白質的差異。最後,我們透過散佈圖以及圓圈圖來比較這些有差異的z值(Fisher z轉換的淨相關係數)。
研究結果與討論:
在情境記憶網路分析中,遺忘型單認知域及遺忘型多認知域的輕度認知功能障礙之神經纖維之共變性(亦即z值)是下降的。這個結果被認為是不成功的代償機制。在語言與感覺運動網路分析中,我們觀察到神經纖維之共變性在遺忘型單認知域輕度認知功能障礙是上升的,在遺忘型多認知域的輕度認知功能障礙是下降的。這個結果暗示著遺忘型單認知域輕度認知功能障礙透過成功的代償機制來維持基本功能,遺忘型多認知域輕度認知功能障礙則因為不成功的代償機制,所以語言與感覺運動的功能下降了。在注意力網路分析中,遺忘型單認知域及遺忘型多認知域的輕度認知功能障礙之神經纖維之共變性是上升的。可是,相對於遺忘型單認知域輕度認知功能障礙,遺忘型多認知域輕度認知功能障礙的神經纖維之共變性是明顯較低的。這個結果被認為是遺忘型單認知域輕度認知功能障礙的代償機制是成功的,遺忘型多認知域輕度認知功能障礙之代償機制則是不成功的。
結論:
本研究結果支持了遺忘型單認知域輕度認知功能障礙白質成功的代償機制,遺忘型多認知域輕度認知功能障礙白質不成功的代償機制之假設。特別的是,我們發現情境記憶、語言、感覺運動和注意力網路之白質代償機制的表現在兩組當中是有顯著差異的。從這結果,我們還推測成功的代償機制是發生在遺忘型輕度認知功能障礙的初期階段,並且在症狀更嚴重的階段變得不成功了。
zh_TW
dc.description.abstractIntroduction:
Amnestic MCI (aMCI) is of high risk to early AD, and could be further categorized into single-domain aMCI (SD-aMCI) and multi-domain aMCI (MD-aMCI). The cognitive decline seen in SD-aMCI is especially prominent in episodic memory, and MD-aMCI represents additional deficits in at least one other cognitive domains. In previous studies, many MRI studies have explored compensation in neurodegenerative disease, claiming that compensation is evident across a number of disorders, including AD and MCI. Comparatively, few studies observed compensation in aMCI, especially in SD-aMCI and MD-aMCI. In the present study, we tested the hypothesis which described the successful white matter compensation in SD-aMCI and unsuccessful compensation in MD-aMCI by compared white matter tract covariance matrices, we especially discussed the episodic memory, language, sensorimotor and attention networks that associated many key cognitive tasks.
Materials and Methods:
Three groups of participants were recruited in the study: 28 healthy aging participants (age: 71.0±5.25 years, male:14), 25 patients with SD-aMCI (age: 73.0±7.49 years, male:12), and 22 patients with MD-aMCI (age: 73.0±7.85 years, male:16). MCI was diagnosed based on the International Working Group and cognitive changes were assessed based on a previous study. The patients with merely impaired episodic memory were classified into SD- aMCI, otherwise, MD-aMCI. All participants received T1-weighted imaging (T1WI) and diffusion spectrum imaging (DSI) on a 3T MRI system. Then, we used tract-based automatic analysis to obtain generalized fractional anisotropy (GFA) values of 76 white matter tracts. Tract covariance was defined as the partial correlation of GFA values across subjects between each pair of tracts, using age, sex, and Fazekas scale as confounders. We used random permutation statistics to examine the differences (p<0.01) of tract covariance between three groups, and further found out the differences that related to the white matter tract of episodic memory, language, sensorimotor and attention networks. Finally, we compared z value (Fisher z -transformed partial correlation coefficients) of these differences by scatter and circos plots.
Results and Discussions:
The decreased tract covariance (i.e. z value) of the episodic memory network suggested that compensatory mechanisms unsuccessful in SD-aMCI and MD-aMCI. In language and sensorimotor network, we observed increased tract covariance in SD-aMCI and decreased in MD-aMCI. These results implied that the SD-aMCI maintained basic function through tract-to-tract successful compensation and reduced the language and sensorimotor ability due to unsuccessful compensation in patients with MD-aMCI. In attention network, the tract covariance of SD-aMCI and MD-aMCI were increased. However, MD-aMCI showed significantly lower tract covariance compared to SD-aMCI. These results suggested that the successful compensation in SD-aMCI and the unsuccessful compensation in patients with MD-aMCI.
Conclusion:
The present study results supported our hypothesis that the successful white matter compensation in SD-aMCI and unsuccessful compensation in MD-aMCI. Especially, the performance of white matter compensation in the episodic memory, language, sensorimotor and attention networks were significantly difference between two groups. From present study results, we also suggested that the successful compensation at the beginning of the aMCI patients and unsuccessful in patients with more severe symptoms.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:13:16Z (GMT). No. of bitstreams: 1
ntu-108-R06458003-1.pdf: 6777090 bytes, checksum: 24d6842ca6b7895b1bc5b8aa53bf825c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT v
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Mild Cognitive Impairment 2
1.3 Cerebral white matter in MCI 3
1.4 Classification of MCI 4
1.5 Amnestic Mild Cognitive Impairment 7
1.6 Compensation in neurodegenerative disease 10
1.7 Motivation and purposes 12
CHAPTER 2 METHODS AND MATERIALS 14
2.1 Participants 14
2.2 Neuropsychological tests 16
2.3 MRI data acquisition 18
2.4 Imaging analysis 19
2.4.1 Image quality assurance 19
2.4.2 DSI data reconstruction 21
2.4.3 Tract-based automatic analysis (TBAA) 22
2.5 Tract covariance matrix 24
2.6 Random permutation statistics 26
2.7 Network analysis 28
CHAPTER 3 Results 31
3.1 Demographic characteristics 31
3.2 Neuropsychological data 32
3.3 Whole brain analysis 33
3.4 Network analysis 36
3.4.1 Episodic memory network 36
3.4.2 Language network 38
3.4.3 Sensorimotor network 40
3.4.4 Attention network 42
CHAPTER 4 Discussions 44
4.1 Summary of whole brain analysis 44
4.2 Network analysis 45
4.3 Limitations and future works 48
CHAPTER 5 CONCLUSIONS 49
References 50
Appendix 59
dc.language.isoen
dc.subject遺忘型單認知域輕度認知功能障礙zh_TW
dc.subject擴散頻譜造影zh_TW
dc.subject神經纖維共變性zh_TW
dc.subject代償機制zh_TW
dc.subject遺忘型多認知域輕度認知功能障礙zh_TW
dc.subjectCompensationen
dc.subjectDiffusion spectrum imagingen
dc.subjectTract covarianceen
dc.subjectSingle-domain amnestic MCIen
dc.subjectMulti-domain amnestic MCIen
dc.title評估遺忘型輕度認知功能障礙亞型的代償機制zh_TW
dc.titleAssessment of white matter compensation in single-and
multiple-domain amnestic mild cognitive impairment: a
diffusion spectrum imaging study
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文超,張玉玲
dc.subject.keyword擴散頻譜造影,神經纖維共變性,代償機制,遺忘型單認知域輕度認知功能障礙,遺忘型多認知域輕度認知功能障礙,zh_TW
dc.subject.keywordDiffusion spectrum imaging,Tract covariance,Compensation,Single-domain amnestic MCI,Multi-domain amnestic MCI,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201901574
dc.rights.note有償授權
dc.date.accepted2019-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫療器材與醫學影像研究所zh_TW
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved