請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72991
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃光裕 | |
dc.contributor.author | Chi-Feng Li | en |
dc.contributor.author | 李奇峰 | zh_TW |
dc.date.accessioned | 2021-06-17T07:13:02Z | - |
dc.date.available | 2024-07-23 | |
dc.date.copyright | 2019-07-23 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-17 | |
dc.identifier.citation | [1] Gao, Q., Chen, W., Lu, L., Huo, D., and Cheng, K., “Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives” Tribology International Vol. 135, 2019, pp.1-17.
[2] ThorLabs 公司壓電元件網站,2019,https: //www.thorlabs.com/ newgroup page9.cfm?objectgroup_id=5030 [3] Breguet, J. M. and Reymond, C., “Stick and slip actuators: design, control, performances and applications,” Micromechatronics and Human Science, 1998. MHS'98. Proceedings of the 1998 International Symposium on. IEEE, 1998, pp.89-95. [4] Rao, N.S., “Analysis of dynamic tilt stiffness and damping coefficients of externally pressurized porous gas journal bearings” , Journal of Tribology, Vol. 100, 1978, pp.359-363. [5] Rao, N.S., “Analysis of externally pressurized porous gas bearings: Rectangular thrust bearings” , International Journal of Machine Tool Design and Research, Vol. 19, 1979, pp.87-93. [6] Singh, K.C., Rao, N.S., and Majumdar, B.C., “Effects of velocity slip, anisotropy and tilt on the steady state performance of aerostatic porous annular thrust bearings” , Wear, Vol. 97, 1984, pp.51-63. [7] Mekid, S. and Bonis, M., “Conceptual design and study of high precision translational stages: Application to an optical delay line” , Precision Engineering, Vol. 21, 1997, pp.29-35. [8] Miyatake, M., Yoshimoto, S., and Sato, J., “Whirling instability of a rotor supported by aerostatic porous journal bearings with a surface-restricted layer” , Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 220, 2006, pp.95-103. [9] Oiwa, N., Masuda, M., Hirayama, T., Matsuoka, T., and Yabe, H., “Deformation and flying height orbit of glass sheets on aerostatic porous bearing guides” , Tribology International, Vol. 48, 2012, pp.2-7. [10] Chiarelli, L.R. and de Castro Silveira, Z., “Static and dynamic analyses of a rotor with aerostatic ceramic porous journal” , Mechanisms and Machine Science, Vol. 21, 2015, pp.1207-1221. [11] Cui, H., Wang, Y., Yue, X., Huang, M., Wamg, Wei., and Jiang, Z., “Numerical analysis and experimental investigation into the effects of manufacturing errors on the running accuracy of the aerostatic porous spindle” , Tribology International, Vol. 118, 2018, pp.20-36. [12] 卓泓民,“整合氣靜壓導引之滯滑式壓電致動系統之設計開發”,國立台灣大學機械工程學系碩士論文,2018。 [13] Maeno, T., Tsukimoto, T., and Miyake, A., “Finite-Element Analysis of the Rotor/Stator Contact in a Ring-Type Ultrasonic Motor” , IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, 1992, pp.668-674. [14] Darby, A.P. and Pellegrino, S., “Inertial stick-slip actuator for active control of shape and vibration” , Journal of Intelligent Material Systems and Structures, Vol. 8, 1997, pp.1001-1011. [15] Kim, S.C. and Kim, S.H., “A precision linear actuator using piezoelectrically driven friction force” , Mechatronics, Vol. 11, 2001, pp.969-985. [16] Rakotondrabe, M., Haddab, Y., and Lutz, P., “Design, development and experiments of a high stroke-precision 2DoF (linear-angular) microsystem” , Proceedings - IEEE International Conference on Robotics and Automation, Vol. 2006, 2006, pp.669-674. [17] 丁仁峰,“壓電蜂鳴片致動器與環形磁陣列霍爾感測器於三軸定位系統之開發探討”,國立台灣大學機械工程學系碩士論文,2011。 [18] Shiratori, H., Takizawa, M., Irie, Y., Hirata, S., and Aoyama, H., “Development of the Miniature Hemispherical Tilt Stage driven by Stick-slip Motion using Piezoelectric Actuators”, 2012 9th France-Japan and 7th Europe-Asia Congress on Mechatronics, MECATRONICS 2012 / 13th International Workshop on Research and Education in Mechatronics, REM 2012, Art.no. 6451017, 2012, pp.251-257. [19] 張耿寧,“氣磁浮減震平台開發與性能探討”,國立台灣大學機械工程學系碩士論文,2011。 [20] NEWWAY 公司氣靜壓軸承網站,2018,https://www.newwayairbearings.com/ technology/design-basics/designing-with-air-bearings/ [21] 賴垠宇,“氣靜壓式精密單軸定位減振平台之設計開發與特性探討”,國立台灣大學機械工程學系碩士論文,2008。 [22] 吳翰杰,“整合套杯式氣靜壓軸承之氣渦輪轉子系統之設計開發與性能探討”,國立台灣大學機械工程學系碩士論文,2010。 [23] OpenLearn,2019,https://www.open.edu/openlearn/science-maths-technology/ engineering-and-technology/technology/structural-devices/content-section-4.3 [24] 黃寶民,“鎳鈦形狀記憶合金線於冷作V型彎曲與時效處理之形狀記憶效應研究”,國立中興大學機械工程學系碩士論文,2013。 [25] Silveira, Z.C., Nicoletti, R., Fortulan, C.A., and Purquerio, B.M., “Ceramic matrices applied to aerostatic porous journal bearings: Material characterization and bearing modeling”, Ceramica, Vol. 56, 2010, pp.201-211. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72991 | - |
dc.description.abstract | 氣靜壓軸承靠著低摩擦、自我降溫、零污染之特性被大量應用於高精度之導引設備中。壓電元件靠著驅動頻率高、剛性高及微小致動的特性被大量應用在高精度之致動器中。本論文提出一種新型精密旋轉平台,結合套杯式氣靜壓軸承高承載及低摸擦的特性,搭配以積層式壓電元件作為致動源的壓電致動器,透過慣性滯滑致動方式達到精密轉動,並開發出高承載與高轉動解析度的旋轉平台。運用理論計算和CFD軟體模擬,對氣靜壓軸承的構型及設計參數對承載力與剛性的影響進行分析探討。透過各種實驗測試壓電致動器的致動特性以及套杯式氣靜壓軸承的承載特性,並做整體系統性能測試驗證在受軸向負載時,旋轉平台確實可以透過慣性滯滑原理致動。依據實驗測試結果,旋轉平台在軸向供氣為2 bar以及徑向供氣為0.5 bar時,軸向承載力可達33 N,徑向承載力可達1.2 N;在驅動電壓為100 V且驅動頻率為500 Hz時,平均轉動角度度可達0.068 arcsec,轉動速度可達33.8 arcsec/s。 | zh_TW |
dc.description.abstract | Aerostatic bearings are widely applied in high-precision guiding systems because of their low friction, self-cooling and no pollution characteristics. Piezo elements are widely applied in high-precision actuators because of their high driving frequency, high stiffness and tiny stroke characteristics. In this thesis, we have proposed a novel precision rotation stage, which combines the high bearing capacity and low friction characteristics of the aerostatic bearing and the piezo actuator which is driven by multilayer piezo element. We also develop the precision rotation stage with high capacity and high angular resolution which achieves precision rotation though the inertial slip-stick driving principle. By using theoretical analyses and computational fluid dynamics simulation, the influences of the constructions and design parameters of the cap-shaped aerostatic bearing on its bearing capacity and stiffness are analyzed. The displacement of the piezo actuator and the bearing capacity of the cap-shaped aerostatic bearing are tested by diverse experiments. Through the axial load experiment on the integrated system, it can be verified that the rotation stage can be driven through the inertial slip-stick driving principle. According to the testing results, the rotation stage has the axial capacity of 33 N and the radial capacity of 1.2 N when axial air supply is 2 bar and radial air supply is 0.5 bar. The rotation stage has the angular resolution of 0.068 arcsec and the angular velocity of 33.8 arcsec/s when the driving voltage is 100 V and the driving frequency is 500 Hz. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:13:02Z (GMT). No. of bitstreams: 1 ntu-108-R06522637-1.pdf: 10463050 bytes, checksum: d91e7971f8b5ccef6b5e4fbbe0603fc6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口委審定書 I
誌謝 II 摘要 III Abstract IV 目錄 V 表目錄 VIII 圖目錄 VIII 符號表 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 多孔質氣靜壓軸承 5 1.2.2 壓電致動器 7 1.3 內容簡介 12 第二章 氣靜壓軸承之壓電致動系統 13 2.1整體系統功能架構 13 2.2氣靜壓軸承裝置 13 2.2.1節流裝置 14 2.2.2氣靜壓軸承 16 2.3壓電致動系統 19 2.3.1壓電元件預壓調整裝置 20 2.3.2摩擦力預壓調整裝置 21 2.3.3旋轉平台 21 第三章 氣靜壓軸承之滯滑式壓電旋轉平台之理論與模擬分析 24 3.1多孔質氣靜壓軸承 24 3.1.1理論推導氣靜壓軸承關係式 24 3.1.2氣靜壓軸承之有限元素分析 28 3.2慣性滯滑致動理論推導 37 第四章 多孔質氣靜壓軸承之滯滑式壓電致動器之設計開發與特性測試 42 4.1多孔質氣靜壓軸承之實體化結構 42 4.2多孔質氣靜壓軸承之特性測試 45 4.2.1力量感測器之校正 45 4.2.2氣靜壓軸承之軸向承載力測試 46 4.2.3氣靜壓軸承之徑向承載力測試 48 4.3滯滑式壓電致動器之實體化結構 50 4.4滯滑式壓電致動器特性測試 51 4.4.1壓電致動器撓性結構之垂直向彈性係數影響因素探討 51 4.4.2壓電致動器撓性結構之水平向彈性係數影響因素探討 52 4.4.3壓電致動器之位移量測實驗 54 4.4.4壓電致動器撓性結構之遲滯效應影響因素探討 58 第五章 整體系統性能測試 60 5.1整體系統之架構 60 5.2整體系統之性能量測 62 5.2.1轉動角度之量測 62 5.2.2轉動解析度及速度之性能驗證 64 5.2.3軸向負載測試 67 第六章 結論與未來展望 68 參考文獻 69 附錄A 資料擷取器 NI USB-6003 72 附錄B 比例調壓閥 FESTO VPPM-6L-L-1-G18-0L6H-V1N 74 附錄C 比例調壓閥 SMC IVT1050-312BS2 75 附錄D 流量計 FESTO SFL3-F500-L-W18-2PB-K1 77 附錄E 光纖位移計 MTI-2100 Fotonic Sensor 78 附錄F 訊號產生器 GWINSTEK AFG-2125 80 附錄G 荷重計 KYOWA LMA-A-5N 82 附錄H 荷重計 KYOWA LUR-A-200NSA1 83 附錄I 訊號放大器 KYOWA CDV-700A 84 附錄J 雷射位移計 KEYENCE LB-12 & LB-72 86 附錄K 壓電元件 THORLABS PC4FL 88 | |
dc.language.iso | zh-TW | |
dc.title | 套杯式氣靜壓軸承導引滯滑式壓電旋轉平台之設計開發 | zh_TW |
dc.title | Design and Development of Stick-Slip Piezo Rotation Stage guided by Cap-shaped Aerostatic Bearing | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡得民,廖先順 | |
dc.subject.keyword | 氣靜壓軸承,套杯式,滯滑式致動,壓電致動器,旋轉平台,轉動解析度,承載力, | zh_TW |
dc.subject.keyword | Aerostatic bearing,Cap-shaped,Stick-slip,Piezo actuator,Angular resolution,Bearing capacity, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201901545 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 10.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。