Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72986
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張?仁(Ching-Jin Chang)
dc.contributor.authorWen-Ching Chenen
dc.contributor.author陳玟晴zh_TW
dc.date.accessioned2021-06-17T07:12:50Z-
dc.date.available2024-07-19
dc.date.copyright2019-07-19
dc.date.issued2019
dc.date.submitted2019-07-17
dc.identifier.citation1. Friedman, J.R., et al., KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev, 1996. 10(16): p. 2067-78.
2. Peng, H., et al., Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol, 2000. 295(5): p. 1139-62.
3. Schultz, D.C., et al., Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. GENES & DEVELOPMENT, 2001. 15(4): p. 428-443.
4. Ivanov, A.V., et al., PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell, 2007. 28(5): p. 823-37.
5. Wang, C., et al., Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem, 2007. 282(41): p. 29902-9.
6. Cammas, F., et al., Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development, 2000. 127(13): p. 2955-63.
7. Hu, G., et al., A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev, 2009. 23(7): p. 837-48.
8. Messerschmidt, D.M., et al., Trim28 Is Required for Epigenetic Stability During Mouse Oocyte to Embryo Transition. Science, 2012. 335(6075): p. 1499-1502.
9. De Sio, F.R.S., et al., KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function. 2012. 119(20): p. 4675-4685.
10. Tanaka, S., et al., KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Reports, 2018. 23(3): p. 796-807.
11. Chikuma, S., et al., TRIM28 prevents autoinflammatory T cell development in vivo. Nat Immunol, 2012. 13(6): p. 596-603.
12. Cantone, I. and A.G. Fisher, Epigenetic programming and reprogramming during development. Nat Struct Mol Biol, 2013. 20(3): p. 282-9.
13. Dalgaard, K., et al., Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. Cell, 2016. 164(3): p. 353-64.
14. Ecco, G., M. Imbeault, and D. Trono, KRAB zinc finger proteins. Development, 2017. 144(15): p. 2719-2729.
15. Urrutia, R., KRAB-containing zinc-finger repressor proteins. Genome Biol, 2003. 4(10): p. 231.
16. Witzgall, R., et al., The Kruppel-Associated Box-a (Krab-a) Domain of Zinc-Finger Proteins Mediates Transcriptional Repression. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(10): p. 4514-4518.
17. Vissing, H., et al., Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett, 1995. 369(2-3): p. 153-7.
18. Collins, T., J.R. Stone, and A.J. Williams, All in the family: the BTB/POZ, KRAB, and SCAN domains. Molecular and Cellular Biology, 2001. 21(11): p. 3609-3615.
19. Lupo, A., et al., KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions. Curr Genomics, 2013. 14(4): p. 268-78.
20. Frietze, S., et al., Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem, 2010. 285(2): p. 1393-403.
21. Sander, T.L., et al., The SCAN domain defines a large family of zinc finger transcription factors. Gene, 2003. 310: p. 29-38.
22. Edelstein, L.C. and T. Collins, The SCAN domain family of zinc finger transcription factors. Gene, 2005. 359: p. 1-17.
23. Honer, C., et al., Identification of SCAN dimerization domains in four gene families. Biochim Biophys Acta, 2001. 1517(3): p. 441-8.
24. Moosmann, P., et al., Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. 1996. 24(24): p. 4859-4867.
25. Wolf, D. and S.P. Goff, Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature, 2009. 458(7242): p. 1201-1204.
26. Jacobs, F.M., et al., An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature, 2014. 516(7530): p. 242-5.
27. Turelli, P., et al., Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res, 2014. 24(8): p. 1260-70.
28. Rowe, H.M., et al., KAP1 controls endogenous retroviruses in embryonic stem cells. Nature, 2010. 463(7278): p. 237-40.
29. Wolf, D. and S.P. Goff, TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell, 2007. 131(1): p. 46-57.
30. Groner, A.C., et al., KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. 2010. 6(3): p. e1000869.
31. Ladomery, M. and G. Dellaire, Multifunctional zinc finger proteins in development and disease. Ann Hum Genet, 2002. 66(Pt 5-6): p. 331-42.
32. Farmer, S.R., Transcriptional control of adipocyte formation. Cell Metab, 2006. 4(4): p. 263-73.
33. Sarjeant, K. and J.M. Stephens, Adipogenesis. Cold Spring Harb Perspect Biol, 2012. 4(9): p. a008417.
34. Tang, Q.Q., T.C. Otto, and M.D. Lane, Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A, 2004. 101(26): p. 9607-11.
35. Tang, Q.Q., T.C. Otto, and M.D. Lane, Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A, 2003. 100(1): p. 44-9.
36. Fajas, L., Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Annals of Medicine, 2003. 35(2): p. 79-85.
37. Kim, W.J., et al., The WTX Tumor Suppressor Interacts with the Transcriptional Corepressor TRIM28. J Biol Chem, 2015. 290(23): p. 14381-90.
38. Zhang, Q., et al., Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle, 2012. 11(23): p. 4310-22.
39. Ambele, M.A. and M.S. Pepper, Identification of transcription factors potentially involved in human adipogenesis in vitro. Mol Genet Genomic Med, 2017. 5(3): p. 210-222.
40. Moon, Y.S., et al., Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol, 2002. 22(15): p. 5585-92.
41. Moseti, D., A. Regassa, and W.K. Kim, Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci, 2016. 17(1): p. 124.
42. Li, D., et al., Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. Journal of Biological Chemistry, 2005. 280(29): p. 26941-26952.
43. Falix, F.A., et al., Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta, 2012. 1822(6): p. 988-95.
44. Nueda, M.L., et al., The EGF-like protein dlk1 inhibits notch signaling and potentiates adipogenesis of mesenchymal cells. J Mol Biol, 2007. 367(5): p. 1281-93.
45. Smas, C.M., L. Chen, and H.S. Sul, Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol, 1997. 17(2): p. 977-88.
46. Smas, C.M., et al., Transcriptional Repression of pref1 by Glucocorticoids Promotes 3T3L1 Adipocyte Differentiation. Biological Chemistry, 1999.
47. Sul, H.S., et al., Function of pref-1 as an inhibitor of adipocyte differentiation. International Journal of Obesity, 2000. 24(S4): p. S15-S19.
48. 呂欣頻, TRIM28在脂肪前驅細胞分化過程中之調控, in 生化科學研究所. 2017, 臺灣大學. p. 1-81.
49. Yan Nan Shen, et al., Transcriptional activation of pref-1 by E2F1 in 3T3 L1 cells. BMB reports, 2009
50. Oleksiewicz, U., et al., TRIM28 and Interacting KRAB-ZNFs Control Self-Renewal of Human Pluripotent Stem Cells through Epigenetic Repression of Pro-differentiation Genes. Stem Cell Reports, 2017. 9(6): p. 2065-2080.
51. Baglivo, I., et al., Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett, 2013. 587(10): p. 1474-81.
52. Quenneville, S., et al., The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep, 2012. 2(4): p. 766-73.
53. Quenneville, S., et al., In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell, 2011. 44(3): p. 361-72.
54. Shamis, Y., et al., Maternal and zygotic Zfp57 modulate NOTCH signaling in cardiac development. Proc Natl Acad Sci U S A, 2015. 112(16): p. E2020-9.
55. Juan, A.M. and M.S. Bartolomei, Evolving imprinting control regions: KRAB zinc fingers hold the key. Genes Dev, 2019. 33(1-2): p. 1-3.
56. Takahashi, N., et al., ZNF445 is a primary regulator of genomic imprinting. Genes & Development, 2019. 33(1-2): p. 49-54.
57. Chou, R.H., Y.L. Yu, and M.C. Hung, The roles of EZH2 in cell lineage commitment. Am J Transl Res, 2011. 3(3): p. 243-50.
58. Wang, L., et al., Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci U S A, 2010. 107(16): p. 7317-22.
59. Chang, C.W., et al., Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol, 2008. 9: p. 61.
60. 林潔如, TRIM28在脂肪分化過程表觀遺傳調控Dlk1表現量, in 生化科學研究所. 2018, 臺灣大學. p. 1-61.
61. Denechaud, P.D., L. Fajas, and A. Giralt, E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne), 2017. 8: p. 311.
62. Iyengar, S. and P.J. Farnham, KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem, 2011. 286(30): p. 26267-76.
63. Wylie, A.A., et al., Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. 2000. 10(11): p. 1711-1718.
64. Lin, S.P., et al., Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nature Genetics, 2003. 35(1): p. 97-102.
65. Liu, H., et al., Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. Int J Mol Sci, 2017. 18(9): p. 1898.
66. Chen, L., et al., Tripartite motif containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions. J Biol Chem, 2012. 287(48): p. 40106-18.
67. Messerschmidt, D.M., et al., <Trim28 Is Required for Epigenetic Stability During Mouse Oocyte to Embryo Transition.pdf>. Science, 2012. 335.
68. Miles, D.C., et al., TRIM28 is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming. Stem Cells, 2017. 35(1): p. 147-157.
69. Dokmanovic, M. and P.A. Marks, Prospects: histone deacetylase inhibitors. J Cell Biochem, 2005. 96(2): p. 293-304.
70. Haberland, M., et al., Redundant control of adipogenesis by histone deacetylases 1 and 2. J Biol Chem, 2010. 285(19): p. 14663-70.
71. Yoo, C.B. and P.A. Jones, Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov, 2006. 5(1): p. 37-50.
72. Chuang, D.M., et al., Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci, 2009. 32(11): p. 591-601.
73. Yoo, E.J., et al., Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem, 2006. 281(10): p. 6608-15.
74. Chen, Y.S., et al., Inhibiting DNA methylation switches adipogenesis to osteoblastogenesis by activating Wnt10a. Sci Rep, 2016. 6: p. 25283.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72986-
dc.description.abstractTRIM28也稱為TIF1β或KAP1,是分化和發育的重要調節因子。我們之前的研究表明敲低TRIM28的表現會抑制脂肪細胞分化。此外,在RNA-seq數據中我們發現了一種名為Dlk1的基因,該基因會被TRIM28下調。Dlk1亦稱為pref-1,已被報導為脂肪細胞分化的抑製劑,在脂肪細胞分化期間其mRNA表現會降低。我們證明了TRIM28在脂肪細胞分化過程中作用於Dlk1啟動子上並以表觀遺傳學方式調節Dlk1表達。然而,哪種DNA結合蛋白將TRIM28招集到Dlk1啟動子尚不清楚。根據先前的報導指出轉錄因子E2f1在脂肪細胞中可以轉錄活化Dlk1基因表達。除E2f1外,含有KRAB的Zfp57可以與TRIM28相互作用來維持H3K9甲基化,而Dlk1也是Zfp57的作用標的。在小鼠中,Zfp57和Zfp445也被報導在DLK1-DIO3基因座中共同作用以維持基因組印記。因此,我們假設在脂肪細胞分化過程中TRIM28介導的Dlk1表達可被E2f1、Zfp57和Zfp445調節。染色質免疫沉澱方法證實E2f1、Zfp57、Zfp445與Dlk1啟動子的結合。當敲除這些因子則會降低了Dlk1 mRNA表達並增強了脂肪生成。免疫共沉澱方法也證實它們與TRIM28的相互作用,且熒光素酶報導分子測定證實TRIM28可以下調這三種因子對Dlk1啟動子介導的熒光素酶報告基因的活性。此外,TRIM28作為與DNA甲基轉移酶和組蛋白去乙醯基化酶相互作用的一個支架蛋白。在3T3-L1細胞中加入組蛋白去乙醯基化酶抑製劑之後顯示Dlk1 mRNA表達有略微增加並抑制脂肪細胞分化。在脂肪前驅細胞上游的小鼠間充質C3H10T1/2細胞中,TRIM28可能在其中發揮不同的作用。在處理表觀遺傳學抑製劑後細胞分化良好但Dlk1表達沒有顯著變化,表明在C3H10T1/2細胞中這種表觀遺傳學調節不受Dlk1的影響。因此,我們的結果支持E2f1、Zfp57和Zfp445可以調節TRIM28對Dlk1 mRNA表達並影響3T3-L1脂肪前驅細胞分化。zh_TW
dc.description.abstractTRIM28 (tripartite motif-containing protein 28), also known as TIF1β or KAP1, is an important regulator of differentiation and development. Our previous study has shown that knockdown of TRIM28 would inhibit adipogenesis. Furthermore, in the RNA-seq data we found a gene called Dlk1, which was downregulated by TRIM28. Dlk1, also called pref-1, has been reported as an inhibitor of adipogenesis, whose mRNA expression was decreased during adipogenesis. We demonstrated that TRIM28 targeted to Dlk1 promoter and epigenetically regulated Dlk1 expression during adipogenesis. However, which DNA-binding protein recruits TRIM28 to Dlk1 promoter is unclear. The transcription factor E2f1 was reported to transcriptionally activate Dlk1 gene expression in adipocytes. Except for E2f1, the KRAB-containing Zfp57 has known to interact with TRIM28 to maintain H3K9 methylation and Dlk1 is also a target of Zfp57. In mouse, Zfp57 and Zfp445 act together to maintain the genomic imprinting, especially in the DLK1-DIO3 locus. Therefore, we suggest that TRIM28-mediated Dlk1 expression may be modulated by E2f1, Zfp57 and Zfp445 during adipogenesis. Chromatin immunoprecipitation (ChIP) assay was used to confirm the binding of E2f1, Zfp57, Zfp445 on Dlk1 promoter. Knockdown of these factors decreased the Dlk1 mRNA expression and enhanced adipogenesis. Co-immunoprecipitation assay was performed to confirm their interaction with TRIM28 and luciferase reporter assays exhibited that TRIM28 can downregulate the activity of these three candidates on Dlk1 promoter-mediated luciferase reporter. In addition, TRIM28 serves as a corepressor scaffold interacting with DNA methylatransferases (DNMTs) and Histone deacetylases (HDACs). So, HDAC inhibitors was treated and showed that slightly increased Dlk1 mRNA expression to inhibit adipogenesis in 3T3-L1 cells. In the mouse mesenchymal C3H10T1/2 cells, which was upstream of preadipocytes, TRIM28 might play different role in it. After treating epigenetics inhibitors, cells differentiated well but the Dlk1 expression has no significantly alteration, indicating that this epigenetics regulation was not affected by Dlk1 in C3H10T1/2 cells. Taken together, our results provide the evidence to support that E2f1, Zfp57 and Zfp445 can regulate TRIM28 on Dlk1 mRNA expression in 3T3-L1 cells, which is important for adipogenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:12:50Z (GMT). No. of bitstreams: 1
ntu-108-R06b46002-1.pdf: 3417645 bytes, checksum: 5215f7ec4c8613ee01090b455e2fc9e8 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
摘要
iii
Abstract iv
Contents………………………………………………………………………................................................ vi
Abbreviations……………………………………………………………………………………………………….....viii
Ⅰ. Introduction 1
1.1 Tripartite motif-containing protein 28 1
1.2 Krüppel-associated box domain zinc finger protein family 2
1.3 The molecular regulation during adipogenesis 3
1.4 Specific aim 5
Ⅱ. Materials and Methods 7
2.1 Plasmid constructs 7
2.2 Cell culture 7
2.3 Oil red O staining………………………………….…………………………………....………………. 8
2.4 Calcium phosphate precipitation transfection 9
2.5 Co-Immunoprecipitation assay 9
2.6 Western blotting 11
2.7 Antibodies 12
2.8 Dual luciferase reporter assay 12
2.9 Lentivirus production and transduction 13
2.10 RNA extraction and reverse transcription(RT) 14
2.11 Quantitative PCR 15
2.12 Chromatin Immunoprecipitation assay ..................................................... 15
2.13 Statistical analysis 17
Ⅲ. Results 19
3.1 Potential factors involved in TRIM28-mediated Dlk1 expression in 3T3-L1 cells …………………………………………………………………………………………………………………. 19
3.2 The expression and functional effect of E2f1 in Dlk1 gene regulation through TRIM28 during adipogenesis 20
3.3 The expression and functional effect of Zfp57 in Dlk1 gene regulation through TRIM28 during adipogenesis 22
3.4 The expression and functional effect of Zfp445 in Dlk1 gene regulation through TRIM28 during adipogenesis 23
3.5 The effect of epigenetic inhibitors on Dlk1 mRNA expression and adipogenesis ...................................................................................................................................................................................................................... 25
3.6 The role of TRIM28 during adipocyte differentiation in C3H10T1/2 cells 26
Ⅳ. Discussion ............................................................................................................................................................................................................................ 28
Ⅴ. Figures ...................................................................................................................................................................................................................................... 34
Figure 1. Potential factors involved in TRIM28-mediated Dlk1 expression in 3T3-L1 cells……………………………………………………………………................................34
Figure 2. The expression and functional effect of E2f1 in Dlk1 gene regulation through TRIM28 during adipogenesis .............................................................................................................................. 37
Figure 3. The expression and functional effect of Zfp57 in Dlk1 gene regulation through TRIM28 during adipogenesis .......................................................................................... 42
Figure 4. The expression and functional effect of Zfp445 in Dlk1 gene regulation through TRIM28 during adipogenesis .......................................................................................... 47
Figure 5. The effect of epigenetic inhibitors on Dlk1 m RNA expression and adipogenesis ...................................................................................................................................................................................................................... 52
Figure 6. The role of TRIM28 during adipocyte differentiation in C3H10T1/2 cells .................................................................................................................................................................................................................................................. 55
Ⅵ. Appendix…………………………………………………………………………………………...................61
Figure 1. The functional domain of TRIM28………………….…………………….……….. 61
Figure 2. The effect of epigenetic inhibitors-treated 3T3-L1 cells………………... 62
Figure 3. knockdown of Zfp445 in C3H10T1/2 cells………………………………….….. 66
Figure 4. The effects of epigenetic inhibitors on PPARγ and Notch1 mRNA expression in C3H10T1/2 cells……………………………………………………………………… 68
Ⅶ. Tables .......................................................................................................................................................................................................................................... 70
Table1. Primers for real-time PCR .......................................................................................................................................... 70
Table2. Primers for ChIP .......................................................................................................................................................................... 71
Table3. Dlk1 promoter sequence .................................................................................................................................................. 71
Ⅷ. References ........................................................................................................................................................................................................................ 72
dc.language.isozh-TW
dc.subjectTRIM28zh_TW
dc.subject表觀遺傳學zh_TW
dc.subjectDlk1zh_TW
dc.subject脂肪細胞分化zh_TW
dc.subjectTRIM28en
dc.subjectDlk1en
dc.subjectepigeneticsen
dc.subjectadipogenesisen
dc.titleTRIM28在前驅脂肪細胞分化過程中調控Dlk1表現之分子機制zh_TW
dc.titleThe molecular mechanism of TRIM28-mediated Dlk1 expression during adipocyte differentiationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),張茂山(Mau-Sun Chang),蕭超隆(Chiao-Long Hsiao)
dc.subject.keywordTRIM28,Dlk1,表觀遺傳學,脂肪細胞分化,zh_TW
dc.subject.keywordTRIM28,Dlk1,epigenetics,adipogenesis,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201901584
dc.rights.note有償授權
dc.date.accepted2019-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved