請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7297完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹承礎(Seng-Cho Chou) | |
| dc.contributor.author | Szu-Wei Liu | en |
| dc.contributor.author | 劉思葦 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:41:08Z | - |
| dc.date.available | 2029-07-22 | |
| dc.date.available | 2021-05-19T17:41:08Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-22 | |
| dc.identifier.citation | [1] L. Yi, X. Deng, M. Wang, D. Ding, and Y. Wang, (2017) 'Localized confident information coverage hole detection in internet of things for radioactive pollution monitoring, ' IEEE Access, vol. 5, no. 18665–18674.
[2] Dang, Y., Lin, Q., & Huang, P. (2019). “AIOps: real-world challenges and research innovations”. In Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings (pp. 4-5). IEEE Press. [3] F. Qiu, B. Zhang, and J, Guo, “A deep learning approach for VM workload prediction in the cloud,” in Proc. IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput., 2016, pp. 319–324. [4] An ENTERPRISE MANAGEMENT ASSOCIATES® (EMA™) White Paper. (2015). “Application Performance Monitoring. ” Retrieved from https://kapost-files-prod.s3.amazonaws.com/published/5554fae276c31e448f00017b/ema-report-application-performance-monitoring-apm-2015-industry-challenges-stat-of-the-art-and-the-case-for-unified-monitoring.pdf (Dec. 1,2018) [5] 裴丹、張聖林、裴昶華(2017)。基於機器學習的智能維運。中國計算機學會通訊,12,68-73。 [6] Gartner. (2018) “Market Guide for AIOps Platforms”. Retrieved from https://www.gartner.com/doc/reprints?id=1-5YRNF78&ct=181218&st=sb (June. 21,2019) [7] Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R. (2015) Workload prediction using arima model and its impact on cloud applications’ QoS. TCC 3(4) [8] Khan, A., Yan, X., Tao, S., Anerousis, N. (2012), “Workload characterization and prediction in the cloud: a multiple time series approach”. In NOMS [9] Z. Xiao, W. Song and Q. Chen. (2013) “Dynamic resource allocation using virtual machines for cloud computing environment”. Parallel and Distributed Systems, IEEE Transactions on, 24(6): 1107-1117. [10] Xue, J., Yan, F., Birke, R., Chen, L.Y., Scherer, T., Smirni, E. (2015) “Practise: robust prediction of data center time series”. In CNSM [11] Zhang, W., Li, B., Zhao, D., Gong, F. and Lu, Q. (2016). Workload Prediction for Cloud Cluster Using a Recurrent Neural Network. In 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI). [12] Adane, P. D., & Kakde, O. G. (2018). Predicting Resource Utilization for Cloud Workloads Using Machine Learning Techniques. In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 1372-1376). IEEE. [13] Y. Tan and X. Gu, (2010) “On predictability of system anomalies in real world,” In Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on, pp. 133–140, IEEE. [14] Wang, T., Zhang, W., Wei, J., & Zhong, H. (2012). Workload-aware online anomaly detection in enterprise applications with local outlier factor. In Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual(pp. 25-34). IEEE. [15] Huang, S., Fung, C., Liu, C., Zhang, S., Wei, G., Luan, Z., & Qian, D. (2017). Arena: Adaptive real-time update anomaly prediction in cloud systems. In 2017 13th International Conference on Network and Service Management (CNSM) (pp. 1-9). IEEE. [16] Hongbing Wang, Lei Wang, Qi Yu, Zibin Zheng, Athman Bouguettaya, and Michael R Lyu. (2017). “Online reliability prediction via motifs-based dynamic bayesian networks for service-oriented systems”. IEEE Transactions on Software Engineering 43, 6 (2017), 556–579. [17] Chen, Y., Yang, X., Lin, Q., Zhang, H., Gao, F., Xu, Z., ... & Li, H. (2019). Outage Prediction and Diagnosis for Cloud Service Systems. In The World Wide Web Conference (pp. 2659-2665). ACM. [18] Le Cun, B.B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. (1990). “Handwritten digit recognition with a back-propagation network.” In Advances in neural information processing systems 2; Morgan Kaufmann Publishers: San Francisco, CA, USA; pp. 396–404. [19] Jarrett, K.; Kavukcuoglu, K.; Lecun, Y. (2009). “What is the best multi-stage architecture for object recognition? ” In IEEE 12th International Conference on Computer Vision, Kyoto, Japan; pp. 2146–2153. [20] Kim, Y. Convolutional neural networks for sentence classification. (2014). arXiv; arXiv:1408.5882. [21] Zhao, R.; Mao, K. “Topic-Aware Deep Compositional Models for Sentence Classification”. (2017).In IEEE/ACM Trans. Audio Speech Lang. Process. pp. 248–260. [22] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. (2014) “Time series classification using multi-channels deep convolutional neural networks”. In Web-Age Information Management; Springer, pp 298–310. [23] Sepp Hochreiter; Jürgen Schmidhuber. (1997) “Long Short-Term Memory”. Neural Computation. pp. 1735-1780. [24] Klaus Greff; Rupesh Kumar Srivastava; Jan Koutník; Bas R. Steunebrink; Jürgen Schmidhuber (2015). “LSTM: A Search Space Odyssey”. IEEE Transactions on Neural Networks and Learning Systems. 28 (10): 2222. arXiv:1503.04069 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7297 | - |
| dc.description.abstract | 隨著數位科技的進步與發展,產業開始應用大型且複雜系統,監控這些大型資源和突發事件會產生大量數據,再加上大數據分析技術普及,智能維運的概念隨之興起,效率管理、異常偵測與預測以及異常自動化處理為其的主要功能,能夠幫助企業降低維運成本、提升客戶體驗,因此導入智能維運技術為系統維運部門非常關切的議題,故本研究蒐集銀行虛擬資源監控資料,聚焦於資源使用率和異常預測。
過去的研究中,針對虛擬資源使用率和異常預測,主要透過蒐集監控資料,以統計模型和機器學習模型進行預測,而本研究則實驗適合處理時間序列資料的深度學習模型:卷積神經網路、長短期記憶模型以及將兩者結合的演算法,同時實驗不同特徵之下模型的預測效果,並與過去的研究方法進行比較,改善未來針對資源使用率以及異常預測模型。根據實驗結果,本研究採用長短期記憶模型結合卷積神經網路的演算法無論在資源使用率或異常預測上,相較於過去研究使用的機器學習演算法,都有更突出的表現。 透過本研究成果,希望能幫助銀行更有效率的管理內部資源,更能提前預測系統異常,降低服務中斷的機率,減少內部系統維運的人工成本、同時提升管理效率以及系統穩定度。 | zh_TW |
| dc.description.abstract | Owing to new technological advances, most of the industries have implemented some large-scale and complicated systems as their infrastructure. Because of the improvement of Big Data Analysis and the numerous data produced by monitoring these systems, the concept of Artificial Intelligence for IT Operations (AIOps) was born. The main purposes of AIOps are to efficiently manage resources, and predict abnormal of the system and automatically deal with emergencies. As a result, introducing AIOps into IT infrastructure is an urgent demand for many companies. In our work, we collected monitoring data of bank’s IaaS platform and focused on the methods to implement AIOps in the bank.
In the past, many research implemented statistical models and machine learning models to predict virtual resource utilization and abnormal situation. In our work, we applied deep learning models, Convolutional Neural Networks(CNN), Long Short-Term Memory(LSTM) and the combination of these two models, and experiment different length of features to improve the performance of the prediction. According to the result of the experiments, the combination of LSTM and CNN is the most effective model to predict utilization and irregular situation among the algorithm used in the previous research. Our research has favorable results which are able to predict resource usage and unusual patterns. By achieving these goals, our work could help the bank to manage the resource more efficiently, reduce the possibility of the interruption of the services as well as the cost of the maintenance, and also ensure the stability of the systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:08Z (GMT). No. of bitstreams: 1 ntu-108-R06725026-1.pdf: 2159399 bytes, checksum: e7456e7d5518c4d87b24c12aad2623bf (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究流程 3 第二章 文獻回顧 4 2.1 資訊系統維運發展 4 2.2 虛擬資源使用量預測 6 2.3 資源異常模式檢測與預測 7 2.3 深度學習演算法 8 2.2.1 卷積神經網絡 8 2.2.2 遞迴神經網絡和長短期記憶模型 9 2.4 小結 11 第三章 研究方法 12 3.1 研究流程 12 3.2 資料集 13 3.3 資料前處理 14 3.4 資源使用率預測模型 19 3.5 資源異常預測模型 21 第四章 實驗結果與分析 23 4.1 實驗評估指標 23 4.2 資源使用率預測結果 24 4.3 資源使用異常預測結果 29 第五章 結論與未來展望 36 5.1 結論 36 5.2 未來展望 37 參考文獻 38 | |
| dc.language.iso | zh-TW | |
| dc.title | 以機器學習演算法預測銀行虛擬資源使用模式 | zh_TW |
| dc.title | Predicting and Analyzing Resource Utilization for Bank’s Virtual Machines Using Machine Learning Algorithm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡益坤,周子元 | |
| dc.subject.keyword | 智能維運,系統異常預測,機器學習,卷積神經網路,長短期記憶模型, | zh_TW |
| dc.subject.keyword | AIOps,system abnormal prediction,machine learning,Convolutional Neural Networks,Long Short-Term Memory, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU201901776 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-23 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| dc.date.embargo-lift | 2029-07-22 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 此日期後於網路公開 2029-07-22 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
