Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世芳(Shih-Fang Chen)
dc.contributor.authorXue-Ming Chenen
dc.contributor.author陳學銘zh_TW
dc.date.accessioned2021-06-17T07:11:50Z-
dc.date.available2021-01-07
dc.date.copyright2021-01-07
dc.date.issued2020
dc.date.submitted2021-01-04
dc.identifier.citationBhatt, P. V., Sarangi, S., Pappula, S. (2019, May). Detection of diseases and pests on images captured in uncontrolled conditions from tea plantations. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV (Vol. 11008, p. 1100808). International Society for Optics and Photonics.
Cai, Z., Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6154-6162).
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
Chen, J., Liu, Q., Gao, L. (2019). Visual tea leaf disease recognition using a convolutional neural network model. Symmetry, 11(3), 343.
DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E. L., Yosinski, J., Gore, M. A., ... Lipson, H. (2017). Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology, 107(11), 1426-1432.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
Gayathri, S., Wise, D. J. W., Shamini, P. B., Muthukumaran, N. (2020, July). Image Analysis and Detection of Tea Leaf Disease using Deep Learning. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 398-403). IEEE.
Getman‐Pickering, Z. L., Campbell, A., Aflitto, N., Grele, A., Davis, J. K., Ugine, T. A. (2020). LeafByte: A mobile application that measures leaf area and herbivory quickly and accurately. Methods in Ecology and Evolution, 11(2), 215-221.
Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
 
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
Golhani, K., Balasundram, S. K., Vadamalai, G., Pradhan, B. (2018). A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5(3), 354-371.
Grinblat, G. L., Uzal, L. C., Larese, M. G., Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, 418-424.
He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hossain, M. S., Mou, R. M., Hasan, M. M., Chakraborty, S., Razzak, M. A. (2018, March). Recognition and detection of tea leaf's diseases using support vector machine. In 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA) (pp. 150-154). IEEE.
Hughes, D., Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060.
Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
Lee, S. H., Chan, C. S., Mayo, S. J., Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1-13.
Lee, S. H., Lin, S. R., Chen, S. F. (2020). Identification of tea foliar diseases and pest damage under practical field conditions using a convolutional neural network. Plant Pathology, 69(9), 1731-1739.
Mohanty, S. P., Hughes, D. P., Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in plant science, 7, 1419.
 
Mukhopadhyay, S., Paul, M., Pal, R., De, D. (2020). Tea leaf disease detection using multi-objective image segmentation. Multimedia Tools and Applications, 1-19.
Patil, J. K., Kumar, R. (2011). Advances in image processing for detection of plant diseases. Journal of Advanced Bioinformatics Applications and Research, 2(2), 135-141.
Pujari, J. D., Yakkundimath, R., Byadgi, A. S. (2015). Image processing based detection of fungal diseases in plants. Procedia Computer Science, 46, 1802-1808.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6), 1137-1149.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 658-666).
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Sun, X., Mu, S., Xu, Y., Cao, Z., Su, T. (2019). Image recognition of tea leaf diseases based on convolutional neural network. arXiv preprint arXiv:1901.02694.
Sun, Y., Jiang, Z., Zhang, L., Dong, W., Rao, Y. (2019). SLIC_SVM based leaf diseases saliency map extraction of tea plant. Computers and Electronics in Agriculture, 157, 102-109.
 
Wang, W. Y., Li, S. M., Lin, M. L., Zhang, J. B., Zeng, F. M., Zeng, X. G., Cai, J. M., Xiao, J. X., Xiao, S. N. (2004). The illustration series of plant protection vol.4 - Tea protection, Taipei, Taiwan: Bureau of Animal and Plant Health Inspection and Quarantine Council of Agriculture (BAPHIQ), EY.
Weizheng, S., Yachun, W., Zhanliang, C., Hongda, W. (2008, December). Grading method of leaf spot disease based on image processing. In 2008 international conference on computer science and software engineering (Vol. 6, pp. 491-494). IEEE.
Yang, N., Yuan, M., Wang, P., Zhang, R., Sun, J., Mao, H. (2019). Tea diseases detection based on fast infrared thermal image processing technology. Journal of the Science of Food and Agriculture, 99(7), 3459-3466.
Yao, Q., Guan, Z., Zhou, Y., Tang, J., Hu, Y., Yang, B. (2009, May). Application of support vector machine for detecting rice diseases using shape and color texture features. In 2009 international conference on engineering computation (pp. 79-83). IEEE.
Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T. (2016, October). Unitbox: An advanced object detection network. In Proceedings of the 24th ACM international conference on Multimedia (pp. 516-520).
Yuan, L., Yan, P., Han, W., Huang, Y., Wang, B., Zhang, J., ... Bao, Z. (2019). Detection of anthracnose in tea plants based on hyperspectral imaging. Computers and Electronics in Agriculture, 167, 105039.
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D. (2020). Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In AAAI (pp. 12993-13000).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72960-
dc.description.abstract茶樹病蟲害是造成茶葉病變的主要成因,且會導致龐大的經濟損失。為了進行適當的防治措施,需要在病蟲害發生早期就辨識其成因。一般而言,茶葉病蟲害須由具備專業知識的人員來進行判斷。然而目前專業人才有限,故無法滿足及時病蟲害辨識之需求。本研究旨在建構一即時辨識系統以達成茶葉病蟲害辨識及其危害程度判別,並收集4295張茶葉表面病蟲害影像,其中包含三種病害及六種蟲害,病害分別為茶赤葉枯病、茶餅病及茶藻斑病等;蟲害分別為潛葉蠅、茶黃薊馬、茶角盲椿象、茶捲葉蛾、茶姬捲葉蛾及黑姬捲葉蛾等。病蟲害影像用於深度學習模型之訓練,而辨識模型採用更快速卷積神經網路(faster region-based convolution neural network, FRCNN)及串接卷積神經網路(cascade R-CNN, CRCNN)。並比較三種不同位置回歸損失函數於模型效能之增進,分別為矩形框偏移差(bounding box difference)、概括交集聯集比(generalize-IoU loss, g-IoU)及距離交集聯集比(distance-IoU loss, d-IoU)。開發之模型效能於使用FRCNN模型時達74.0% 之平均精確度(average precision, AP)及77.9% 之分類準確度(accuracy of classification, Acc);於使用CRCNN模型時達到75.8% 之平均精確度及83.6% 之分類準確度。本研究建立之模型可於網頁伺服器上提供茶葉病蟲害辨識之服務。藉由推廣此服務可協助茶農即時了解茶園中的病蟲危害,並規劃病蟲害整合管理,以降低病蟲害造成之茶產量損失。zh_TW
dc.description.abstractTea diseases and harming insects are major factors that cause lesions to tea foilages and result tremendous economic losses. It is essential to identify the lesion causes in a relatively early stage so that proper actions can be taken. Conventionally lesion causes were identified manually by phytopathologists or entomopathogists. However, professionals are limited and may not meet the demands of lesion cause identification in time. Thus, an automatic identification approach is needed. This study aimed at developing a real-time identification system for identifying the causes of lesions and the severity stages of the lesions for tea foilages. A dataset composed of 4295 tea foilage images with lesions were collected. The causes of the lesions included three diseases – brown blight (Colletotrichum camelliae), blister blight (Exobasidium vexans Massee), and algal leaf spot (Cephaleuros virescens Kunze); six harming insects – tea mosquito bug (Helopeltis fasciaticollis Poppius), oriental tea tortrix (Homona magnanima Diakonoff), small tea tortrix (Adoxophyes sp.), tea flush worm (Cydia leucostoma Meyrick), tea thrips (Scirtothrips dorsalis), and leaf miner (Liriomyza sp.). A faster region-based convolution neural network (FRCNN) and a cascade RCNN (CRCNN) were then trained to identify the causes of the lesions. Three training losses were used, including bounding box difference, generalize-IoU loss (g-IoU loss), and distance-IoU loss (d-IoU loss). The trained FR-CNN model achieved a mean average precision (mAP) of 74.0% and accuracy of classification of 78.0%. The CRCNN achieved an mAP of 75.8% and an accuracy of 83.6%. The trained models were hosted on a webpage to provide the service of lesion cuase identification to public. The developed system provides real-time and may help farmers set up a better-integrated pest management (IPM) strategy to decrease yield loss caused by pests.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:11:50Z (GMT). No. of bitstreams: 1
U0001-2912202020043200.pdf: 6588236 bytes, checksum: 90aeb3b6c504e86506b2d6e05c292b76 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
ABBREVIATIONS ix
CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Objective 2
CHAPTER 2. LITERATURE REVIEW 3
2.1 Background of Tea Diseases and Harming Insects 3
2.2 Image Processing on Plant Disease Identification 7
2.3 Deep Learning and Object Detection Problem 8
2.4 Deep Learning on Plant Disease Identification 9
2.5 Summary of Related Literatures 10
CHAPTER 3. MATERIAL AND METHODS 12
3.1 Image Collection and Label Methods 12
3.2 Model Architecture 15
3.3 Loss function 16
3.4 Training Setups, Parameters and Environment 17
3.5 Feature Visualizing 19
3.6 Evaluation Method 20
CHAPTER 4. RESULTS AND DISCUSSION 21
4.1 Model Performance Comparison 21
4.2 Classifier Performance 26
4.3 Visualization 29
4.4 The Web Application Deployment 32
CHAPTER 5. CONCLUSION AND FUTURE WORK 35
5.1 Conclusion 35
5.2 Future work 35
REFERENCE 37
Appendix A. Grad-CAM of Different Tea Diseases and Pest 41
dc.language.isoen
dc.subject茶葉病蟲害zh_TW
dc.subject病害辨識zh_TW
dc.subject位置回歸損失函數zh_TW
dc.subject串接卷積神經網路zh_TW
dc.subjecttea pesten
dc.subjectlesion identificationen
dc.subjectloss function of location regressionen
dc.subjectCascade R-CNNen
dc.title區域卷積神經網路及位置回歸方法於茶葉病蟲害辨識之應用
zh_TW
dc.titleApplication of Region-based Convolution Neural Network and Location Regression Methods on Tea Pest Identificationen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴尚宏(Shang-Hong Lai),郭彥甫(Yan-Fu Kuo),楊智凱(Chih-Kai Yang),林秀橤(Shiou-Ruei Lin)
dc.subject.keyword茶葉病蟲害,病害辨識,位置回歸損失函數,串接卷積神經網路,zh_TW
dc.subject.keywordtea pest,lesion identification,loss function of location regression,Cascade R-CNN,en
dc.relation.page48
dc.identifier.doi10.6342/NTU202004479
dc.rights.note有償授權
dc.date.accepted2021-01-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-2912202020043200.pdf
  未授權公開取用
6.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved