請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范致豪(Chihhao Fan) | |
| dc.contributor.author | JING-YU LIAO | en |
| dc.contributor.author | 廖景昱 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:11:16Z | - |
| dc.date.available | 2022-08-05 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-19 | |
| dc.identifier.citation | Akter, M., Fan, L., Rahman, M. M., Geissen, V., & Ritsema, C. J. (2018). Vegetable farmers’ behaviour and knowledge related to pesticide use and related health problems: A case study from Bangladesh. Journal of Cleaner Production, 200, 122-133.
Adams, F. (1981). Nutritional imbalances and constraints to plant growth on acid soils. Journal of plant nutrition, 4(2), 81-87. Barnes, D. G., Dourson, M., Preuss, P., Bellin, J., Derosa, C., Engler, R., ... & Ghali, G. (1988). Reference dose (RfD): description and use in health risk assessments. Regulatory toxicology and pharmacology, 8(4), 471-486. Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I., & Moretto, A. (2008). Cumulative risk assessment of pesticide residues in food. Toxicology letters, 180(2), 137-150. Bettinetti, R., Croce, V., & Galassi, S. (2005). Ecological risk assessment for the recent case of DDT pollution in Lake Maggiore (Northern Italy). Water, air, and soil pollution, 162(1-4), 385-399. Berntson, G. G., Potolicchio, S. J., & Miller, N. E. (1973). Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proceedings of the National Academy of Sciences, 70(9), 2497-2499. Chapman, P. M., Fairbrother, A., & Brown, D. (1998). A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry: An International Journal, 17(1), 99-108. Chuang, W. C. (2012). Food habits of leopard cats (Prionailurus bengalensis chinensis) and domestic cats (Felis catus) in Tongxiao, Miaoli. National Pingtung University of Science and Technology Pingtung, Taiwan (Chinese with English Abstract). Cairns, T., & Sherma, J. (1992). Emerging strategies for pesticide analysis (Vol. 1). CRC press. Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B., & Zanella, R. (2018). Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 626, 737-743. Chen, M. T., Liang, Y. J., Kuo, C. C., & Pei, K. J. C. (2016). Home ranges, movements and activity patterns of leopard cats (Prionailurus bengalensis) and threats to them in Taiwan. Mammal Study, 41(2), 77-87. Chen, Y., Zang, L., Liu, M., Zhang, C., Shen, G., Du, W., ... & Wang, X. (2019). Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. Environment international, 127, 550-557. Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the total environment, 512, 143-153. Cunningham, V. L., Binks, S. P., & Olson, M. J. (2009). Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regulatory Toxicology and Pharmacology, 53(1), 39-45. Cunningham, V. L., Perino, C., Vincent, J. D., Hartmann, A., & Bechter, R. (2010). Human health risk assessment of carbamazepine in surface waters of North America and Europe. Regulatory Toxicology and Pharmacology, 56(3), 343-351. Dourson, M. L., Felter, S. P., & Robinson, D. (1996). Evolution of science-based uncertainty factors in noncancer risk assessment. Regulatory Toxicology and Pharmacology, 24(2), 108-120. Dorne, J. L. C. M., & Renwick, A. G. (2005). The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicological Sciences, 86(1), 20-26. De Jesus Gaffney, V., Almeida, C. M., Rodrigues, A., Ferreira, E., Benoliel, M. J., & Cardoso, V. V. (2015). Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water research, 72, 199-208. EFSA (European Food Safety Authority). (2009). Guidance Document on Risk Assessment for Birds and Mammals on request from EFSA. EFSA Journal, 7(12), 358. Ernst, F., Alonso, B., Colazzo, M., Pareja, L., Cesio, V., Pereira, A., ... & Pérez-Parada, A. (2018). Occurrence of pesticide residues in fish from south American rainfed agroecosystems. Science of the Total Environment, 631, 169-179. Fenik, J., Tankiewicz, M., & Biziuk, M. (2011). Properties and determination of pesticides in fruits and vegetables. TrAC Trends in Analytical Chemistry, 30(6), 814-826. Franke, C., Studinger, G., Berger, G., Böhling, S., Bruckmann, U., Cohors-Fresenborg, D., & Jöhncke, U. (1994). The assessment of bioaccumulation. Chemosphere, 29(7), 1501-1514. Feng, Y., Bao, Q., Yunpeng, C., Lizi, Z., & Xiao, X. (2019). Stochastic potential ecological risk model for heavy metal contamination in sediment. Ecological Indicators, 102, 246-251. Gonçalves, C., & Alpendurada, M. F. (2005). Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography–mass spectrometry. Talanta, 65(5), 1179-1189. Gerber, R., Smit, N. J., Van Vuren, J. H., Nakayama, S. M., Yohannes, Y. B., Ikenaka, Y., ... & Wepener, V. (2016). Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Science of the Total Environment, 550, 522-533. Hamilton, D., Ambrus, Á., Dieterle, R., Felsot, A., Harris, C., Petersen, B., ... & Earl, M. (2004). Pesticide residues in food—acute dietary exposure. Pest Management Science: formerly Pesticide Science, 60(4), 311-339. Johnston, J. J. (2001). Introduction to Pesticides and Wildlife. Li, L., Zhang, Y., Zheng, L., Lu, S., Yan, Z., & Ling, J. (2018). Occurrence, distribution and ecological risk assessment of the herbicide simazine: A case study. Chemosphere, 204, 442-449. Li, L., Wu, J., Lu, J., Min, X., Xu, J., & Yang, L. (2018). Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicology and environmental safety, 166, 345-353. Li, X., Chen, Z., Chen, Z., & Zhang, Y. (2013). A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere, 93(6), 1240-1246. Masiá, A., Vásquez, K., Campo, J., & Picó, Y. (2015). Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River Basin. Journal of Chromatography A, 1378, 19-31. Miller, C. 2001. 'Prionailurus bengalensis' (On-line), Animal Diversity Web. University of Michigan. Accessed May 14, 2012, from the web page: http://animaldiversity.ummz.umich.edu/site/accounts/information/Prionailurus_bengalensis.html Moriarty, F. (1972). The effects of pesticides on wildlife: exposure and residues. Science of the total Environment, 1(3), 267-288. Mostafalou, S., & Abdollahi, M. (2018). The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology, 409, 44-52. Pei, K. J. C., & Chen, M. T. (2006). Present status and conservation of small carnivores at low elevation mountains in Shinchu County and Miaoli County (1/3). Forestry Bureau, Council of Agriculture, Executive Yuan, Taiwan. Report Taiwan Forestry Bureau Conservation Research Series, (94-05). Pei, K. J. C., & Chen, M. T. (2007). Present status and conservation of small carnivores at low elevation mountains in Shinchu County and Miaoli County (2/3). Forestry Bureau, Council of Agriculture, Executive Yuan, Taiwan. Report Taiwan Forestry Bureau Conservation Research Series, (94-05). Pei, K. J. C., & Chen, M. T. (2008). Present status and conservation of small carnivores at low elevation mountains in Shinchu County and Miaoli County (3/3). Forestry Bureau, Council of Agriculture, Executive Yuan, Taiwan. Report Taiwan Forestry Bureau Conservation Research Series, (94-05). Pristed, M. J. S., Bundschuh, M., & Rasmussen, J. J. (2016). Multiple exposure routes of a pesticide exacerbate effects on a grazing mayfly. Aquatic Toxicology, 178, 190-196. Rodrigues, E. T., Pardal, M. Â., Salgueiro-González, N., Muniategui-Lorenzo, S., & Alpendurada, M. F. (2016). A single-step pesticide extraction and clean-up multi-residue analytical method by selective pressurized liquid extraction followed by on-line solid phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry for complex matrices. Journal of Chromatography A, 1452, 10-17. Renwick, A. G., & Lazarus, N. R. (1998). Human variability and noncancer risk assessment—an analysis of the default uncertainty factor. Regulatory Toxicology and Pharmacology, 27(1), 3-20. Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B., & Larsson, D. J. (2011). GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Journal of hazardous materials, 186(2-3), 1586-1593. Sharma, D., Nagpal, A., Pakade, Y. B., & Katnoria, J. K. (2010). Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: A review. Talanta, 82(4), 1077-1089. Sunquist, M., & Sunquist, F. (2002). Wild Cats of the World. The University of Chicago Press. Chicago and London. Sun, C., Zhang, Z., Cao, H., Xu, M., & Xu, L. (2019). Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere, 219, 538-545. Thanh-Nho, N., Marchand, C., Strady, E., Vinh, T. V., & Nhu-Trang, T. T. (2019). Metals geochemistry and ecological risk assessment in a tropical mangrove (Can Gio, Vietnam). Chemosphere, 219, 365-382. Tong, Y., Chen, L., Liu, Y., Wang, Y., & Tian, S. (2019). Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China. Marine Pollution Bulletin, 142, 520-524. US Environmental Protection Agency. (2005). Guidance for developing ecological soil screening levels. Van Meter, R. J., Glinski, D. A., Purucker, S. T., & Henderson, W. M. (2018). Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans). Science of the total environment, 624, 1348-1359. Vryzas, Z. (2018). Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, 4, 5-9. Wee, S. Y., & Aris, A. Z. (2017). Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere, 188, 575-581. Wang, D., Wang, Y., Singh, V. P., Zhu, J., Jiang, L., Zeng, D., ... & Zeng, C. (2018). Ecological and health risk assessment of PAHS, OCPS, and PCBS in Taihu lake basin. Ecological indicators, 92, 171-180. Weir, S. M., Suski, J. G., & Salice, C. J. (2010). Ecological risk of anthropogenic pollutants to reptiles: evaluating assumptions of sensitivity and exposure. Environmental Pollution, 158(12), 3596-3606. Wei, D., Wu, X., Ji, M., Xu, J., Dong, F., Liu, X., & Zheng, Y. (2019). Carboxin and its major metabolites residues in peanuts: Levels, dietary intake and chronic intake risk assessment. Food chemistry, 275, 169-175. Xu, X., Chen, J., Li, B., & Tang, L. (2018). Carbendazim residues in vegetables in China between 2014 and 2016 and a chronic carbendazim exposure risk assessment. Food control, 91, 20-25. Yan, Z., Pan, J., Gao, F., An, Z., Liu, H., Huang, Y., & Wang, X. (2019). Seawater quality criteria derivation and ecological risk assessment for oil pollution in China. Marine Pollution Bulletin, 142, 25-30. Yan, Z., Wang, W., Zhou, J., Yi, X., Zhang, J., Wang, X., & Liu, Z. (2015). Screening of high phytotoxicity priority pollutants and their ecological risk assessment in China’s surface waters. Chemosphere, 128, 28-35. 闕雅文(2015)。石虎棲地保育效益之評估—石虎棲地居民與非棲地居民/孩子的未來或成人的現在。新竹教育大學環境與文化資源學系研究所,碩士論文。 姜博仁、林良恭、袁守立(2015)。重要石虎棲地保育評析(1/2)。東海大學熱帶生態學與生物多樣性研究中心,行政院農委會林務局研究報告。 姜博仁、林良恭、袁守立(2016)。重要石虎棲地保育評析(2/2)。東海大學熱帶生態學與生物多樣性研究中心,行政院農委會林務局研究報告。 房兆屏(2016)。南投地區石虎的分布與棲地利用。嘉義大學農學院森林暨自然資源學系研究所,碩士論文。 鄭錫奇、張簡琳玟、張仕緯(1995)。南投縣哺乳類動物之調查。特有生物研究保育中心,研究報告。 吳幸娟、陳振菶(2010)。非致癌性物質健康風險評估中不確定性係數之應用與規範研究。行政院勞工委員會勞工安全衛生研究所,研究報告。 陳美汀(2015)。台灣淺山地區石虎 (Prionailurus bengalensis) 的空間生態學。屏東科技大學生物資源研究所學位論文,1-88。 賴正偉(2003)。農藥對於鳥類毒害之生態風險評估。東華大學自然資源管理研究所,碩士論文。 裴家騏、陳美汀(2011)。台灣淺山地區哺乳動物保育的迫切議題。國道永續經營環境復育研討會,交通部臺灣區國道高速公路局主辦。 王思懿(2014)。臺灣陸域保育類哺乳動物的空間分布預測,保護區涵蓋及熱點分析。臺灣大學生態學與演化生物學研究所學位論文,1-70。 沈松茂(2010)。實用土壤力學試驗(第九版)。出版地點:台北文笙。 農委會農業統計資料(2011),縣市耕地型態動態查詢系統。檢自http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx?field_group_id=1 (2019) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72945 | - |
| dc.description.abstract | 伴隨人口密度增大,全世界對土地、土壤的利用強度也不斷提升。台灣地狹人稠,為了在有限的農地面積上種植出能供給所有人口的糧食,現有耕地種植密度相當高,慣型農業成了目前農業的主流。大量使用農藥與環境用藥,使農藥污染對物種產生許多慢性的威脅,尤其生活在密集農業使用地區的生物,這樣的影響不得忽視。土壤是物質流動的主要介質之一,不只是許多污染物流動的區域,也是各物種賴以為生的基礎。污染物產生後,隨著地球物理循環,可能流經土壤而產生遺留,亦可能最終以土壤為歸屬而殘留其中,生活於此的生物首當其衝與其接觸,為了探討土壤介質中污染物對生物的影響,本研究以農業活動所使用的環境用藥殘留為主要研究範疇,調查現地土壤中該些殘留污染物分布,發展出土壤中污染物對單一特定哺乳類健康影響之風險評估架構。
石虎為本研究之研究對象,其在國際自然保護聯盟(IUCN)中列為極危(CR)之瀕危物種,生存於台灣西部重要農業區。石虎位於食物鏈頂端,其族群為生態系統功能的評估指標之一,稀少的族群量使其對環境變化具高敏感性。伴隨著農地開墾及越加盛行的慣行農法,農藥成為石虎生存環境中主要的污染源,本研究將就環境中農業及環境用藥殘留對於石虎生態穩定性進行生態與威脅評估,以探討人類活動於石虎生存之慢性影響。首先將對研究範圍內的農村活動進行了解,為準確比對不同地點與土地使用型態對石虎產生之危害差異,本研究採集現地土壤樣本進行各項農業及環境用藥檢測分析;其次將建立石虎健康風險評估模型,藉由各項統計資料與本研究第一階段獲得之結果,計算農藥對石虎造成之風險商數;最後應用空間資訊分析技術,建立環境監測結果與動物生存風險分析結果之鍊結關係。探討現行的慣行農法、環境中農藥流布、環境空間情勢變遷等因子,對於石虎族群分布與消長,及可能危及其存續之環境威脅,找出經濟發展過程中造成的環境污染與石虎最直接之關聯。過去對於健康風險評估多著重於人體健康,對於野生哺乳類則鮮少有相關報導,除了現地調查外,本研究著重於風險評估架構的建立與相關參數蒐集、彙整,使計算結果更符合實際情況。 在研究地區中,檢測出農藥種類包含殺蟲劑、殺草劑、殺菌劑等。不同的作物區域中檢測出的農藥相當多樣,葡萄或草莓種植區的農藥殘留更高達10多種。將農藥檢測結果進行針對石虎的風險評估,單一點位、單一種農藥風險商數約落在0.00039~62.5,若同一地點施用農藥數量多,亦或是石虎攝食範圍涵蓋兩個點位以上,不但風險商數加成,不同農藥交互作用亦可能使危害加重,造成石虎敏銳度下降及提高農藥中毒的機率,間接使其生存機會降低。農田大量開發亦可能促成石虎棲地由平地為主的西部往東邊地勢高處遷徙的現象。對於野生哺乳動物健康風險評估案例少且相關參數的蒐集工作量繁雜,本研究希望能有效將人體健康風險評估的概念延伸應用於野生哺乳類,並做為臺灣保育石虎的前瞻研究。後續若欲應用於其他需要保育之物種,亦有研究可做為其參考,唯不同物種之模式調校與應用,仍需更多計算方式的推演,及準確的參數選擇。 | zh_TW |
| dc.description.abstract | Soil is one of the main media for the flow of substances and pollutants, and it is an important environmental basis for various species to survive. Once produced, the pollutants follow the geophysical cycle and flow through the soil, and the species living there become the first to bear the brunt of these pollutants. In order to investigate the effects of pollutants, this present study aims to assess the distribution of spent pesticides and environmental agents in the agro-farming areas and to evaluate their impact on the ecological risk for an endangered species combing the health assessment concept with the modelling algorithm proposed by European Food Safety Authority (EFSA).
The Prionailurus bengalensis, commonly known as Leopard cat, classified as Critically Endangered (CR) by International Union for Conservation of Nature (IUCN), is the research object of this study. Surviving in important agricultural areas in western Taiwan, the small ethnic population makes it highly sensitive to environmental changes. Leopard cats are at the top notch in the food-web structure, and their existence is significant for ecological stability and biodiversity. Accompanied by agricultural reclamation and conventional farming, pesticides have become the main source of pollution in the living territory of leopard cats. Their ecological stability and sustainability were evaluated in the context of the distribution/residual of pesticides and environmental agents applied during agricultural activities. The first step is to understand the agricultural activities within the area of the study. In order to accurately compare the hazards from different locations and land use patterns, this study collect soil samples to analyze the concentrations of pesticides and environmental agent residues. The ecological risk assessment model for leopard cats is established. The statistical data and the research results obtained are used to calculate the risk quotient of pesticides on leopard cats. Spatial information analysis was conducted to establish the relationship between environmental test results and animal survival risk assessment. Factors that threaten the distribution and growth of their population such as the current conventional farming, the distribution of pesticides in the environment, the changes in land utilization and other threats that endanger their survivorship are further explored with an aim to find the direct correlation between environmental pollutions caused by economic growth and the existence of leopard cats. In the past, the risk assessments focused more on human health, and wild mammals risk analyses were rarely reported. In addition to the field survey in study area, this study puts emphasis on the collection of relevant parameters, making the calculation results more fit with the actual situation. In the study area, the pesticide residuals contained pesticides, herbicides, and fungicides, in grape or strawberry growing areas, there are up to more than 10 kinds of pesticides detected. These results were used to evaluate the risk to the leopard cats. The risk quotient of a single pesticide in a single position falls between 0.00039 and 62.5. If the species of pesticides applied at single place are abundant, or the activity area of leopard cat covers more than two points, not only the risk quotient would increase, but the interaction of different pesticides might have a synergistic effect. As a result, the acuity of leopard cats decreased and the probability of pesticide poisoning increased, which indirectly reduced the chance of their survival. Large-scale agricultural development may also lead to the phenomenon of their migration to the low elevation mountain regions. In terms of wild mammal health risk assessment, few related studies have been reported, and the collection of related parameters is very critizal. This study intends to effectively apply the concept of human health risk assessment to wild mammals and becomes a prospective study of the conservation plan for leopard cats in Taiwan. This study can also be a reference for the risk assessment of other species that need to be conserved. Only the model adjustment for different species still requires more equation deduction and parameter collection/acquisition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:11:16Z (GMT). No. of bitstreams: 1 ntu-108-R06622029-1.pdf: 7794908 bytes, checksum: 9b2588a3a08fa3a74774855365607375 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 論文審定書 I
致謝 II 摘要 III Abstract V 目錄 VIII 圖目錄 XII 表目錄 XIV 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 5 第二章 文獻回顧 6 2.1石虎簡介 6 2.1.1石虎背景資料 6 2.1.2石虎生存現況 7 2.2 苗栗地區簡介 9 2.2.1苗栗發展變遷軌跡 11 2.3 台灣農業藥劑使用情形 13 2.3.1 農業藥劑發展軌跡 13 2.3.2 農業藥劑使用情形 13 2.3.3苗栗地區農藥使用概況 14 2.3.4農藥殘留特性 15 2.4 風險評估之發展與應用 17 2.4.1風險評估應用實例 19 2.4.2風險評估案例探討 23 第三章 研究內容與方法 30 3.1 研究內容 30 3.2實驗樣區及採樣點位選擇 31 3.3 土壤樣本檢測 31 3.3.1 採樣與保存 31 3.3.2 土壤質地分析-篩分析 31 3.3.3 土壤質地分析-比重分析 32 3.3.4土壤pH值檢測 34 3.3.5土壤(土水比1:1)電導度檢測 34 3.3.6土壤含碳量/有機質含量檢測 35 3.3.7土壤可溶性陰陽離子檢測 35 3.3.8土壤農藥殘留檢測 36 3.4風險評估模式確立 37 3.4.1 參數蒐集 37 3.4.1.1農藥資料蒐集 37 3.4.1.2 石虎食性/行為資料: 38 3.4.2風險評估模式建立 39 3.4.2.1石虎攝食參數計算 39 3.4.2.2風險商數計算 41 第四章 結果與討論 44 4.1實驗樣區總覽 44 4.2基本檢測項目結果 45 4.2.1土壤質地分析-篩分析 45 4.2.2土壤質地分析-比重分析 50 4.2.3土壤pH值 51 4.2.4土壤電導度檢測 52 4.2.5土壤含碳量、有機質含量 54 4.2.6土壤可溶出離子分析 57 4.2.7農藥殘留檢測 61 4.2.8基礎實驗綜合分析 62 4.3健康風險評估 64 4.3.1參數蒐集 64 4.3.1.1農藥毒理資料 64 4.3.1.2石虎食性/行為資料 64 4.3.2風險值評估 65 4.4風險值與環境交互分析 70 4.4.1風險值分級分析 70 4.4.2風險值與人類活動區域交互作用 73 4.4.3風險值與石虎遭路殺點位之交互影響 75 第五章 結論 78 參考文獻 80 附件一、採樣點位分布圖 86 附件二、採樣點位土地利用型態 87 附件三、石虎遺體內毒鼠藥檢出結果 101 附件四、風險評估總表 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 健康風險評估 | zh_TW |
| dc.subject | 哺乳類 | zh_TW |
| dc.subject | 石虎 | zh_TW |
| dc.subject | 豹貓 | zh_TW |
| dc.subject | 風險 | zh_TW |
| dc.subject | 農藥殘留 | zh_TW |
| dc.subject | 野生動物 | zh_TW |
| dc.subject | Prionailurus bengalensis | en |
| dc.subject | risk assessment. | en |
| dc.subject | environmental distribution | en |
| dc.subject | pesticide residual | en |
| dc.subject | wild animals | en |
| dc.subject | mammals | en |
| dc.subject | leopard cat | en |
| dc.title | 農業及環境用藥於土壤環境流布對苗栗地區臺灣石虎生態穩定性之衝擊評估 | zh_TW |
| dc.title | Distribution of environmental agents and the ecological risk assessment model for Prionailurus bengalensis in Miaoli, Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 裴家騏(Jai-Chyi Pei),朱有田(Yu-Ten Ju) | |
| dc.subject.keyword | 石虎,豹貓,哺乳類,野生動物,農藥殘留,風險,健康風險評估, | zh_TW |
| dc.subject.keyword | Prionailurus bengalensis,leopard cat,mammals,wild animals,pesticide residual,environmental distribution,risk assessment., | en |
| dc.relation.page | 115 | |
| dc.identifier.doi | 10.6342/NTU201901684 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 7.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
