請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72941完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳發林 | |
| dc.contributor.author | Yu-Hsiang Huang | en |
| dc.contributor.author | 黃昱翔 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:11:07Z | - |
| dc.date.available | 2029-12-31 | |
| dc.date.copyright | 2019-07-24 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-19 | |
| dc.identifier.citation | 1. Turner, J. S., 1979: Buoyancy Effects in Fluids. Cambridge University Press.
2. Jevons, W. S., 1857. On the cirrous form of cloud. London, Edinburgh, and Dublin Philos. Mag. J. Sci., 4th Series, 14, 22–35. 3. Radko, Timour. 2013. Double-Diffusive Convection. Cambridge University 4. Rayleigh, Lord, 1883: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14, 170–177. 5. Stommel, H., A. B. Arons, and D. Blanchard, 1956: An oceanographic curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153. 6. Stern, M. E., 1960: The “salt-fountain” and thermohaline convection. Tellus, 12,172–175. 7. Huppert, H. E., and J. S. Turner, 1981: Double-diffusive convection. J. Fluid Mech., 106, 299–329. 8. Turner, J. S., 1985: Multicomponent convection. Annu. Rev. Fluid Mech., 17, 11–44. 9. Thorpe, S., Hutt, P., & Soulsby, R. 1969. The effect of horizontal gradients on thermohaline convection. J. Fluid Mech., 38(2), 375-400 10. Chen, C. F., Briggs, D., Wirtz, R., 1971 Stability of thermal convection in a salinity gradient due to lateral heating. Intl J. Heat Mass Transfer 14, 57–65 11. Wirtz, R. A., Briggs, D. G. & Chen, C. F. 1972 Physical and numerical experiments on layered convection in a density-stratified fluid. Geophys. Fluid Dyn. 3, 265–288 12. R.A. Wirtz, L.H. Liu, 1975 Numerical experiments on the onset of layered convection in a narrow slot containing a stably stratified fluid, Intl J. Heat Mass Transfer, 18, 11, 1299-1305 13. Heinrich, J. C. 1984, A finite element model for double diffusive convection. Int. J. Numer. Meth. Engng., 20: 447-464. 14. J.W. Lee, J.M. Hyun 1991 Double-diffusive convection in a cavity under a vertical solutal gradient and a horizontal temperature gradient Intl J. Heat Mass Transfer, 34, 2423-2427. 15. Katsuyoshi Kamakura, Hiroyuki Ozoe, 1993 Experimental and numerical analyses of double diffusive natural convection heated and cooled from opposing vertical walls with an initial condition of a vertically linear concentration gradient, Intl J. Heat Mass Transfer, 36, Issue 8, 2125-2134 16. Chen, C.F., & Chen, F. 1997 Salt-finger convection generated by lateral heating of a solute gradient. Journal of Fluid Mechanics, 352, 161-176 17. Chan, C.L., Chen, W.Y., & Chen, C.F. 2002 Secondary motion in convection layers generated by lateral heating of a solute gradient. J. Fluid Mech, 455, 1-19 18. Chang, T.Y., Chen, F., & Chang, M.H. 2018 Three-dimensional stability analysis for a salt-finger convecting layer. J. Fluid Mech, 841, 636-653 19. Neal, V. T., S. Neshyba, and W. Denner, 1969 Thermal stratification in the Arctic Ocean. Science, 166, 373–374 20. Konrad, T.G., 1970 The Dynamics of the Convective Process in Clear Air as Seen by Radar. J. Atmos. Sci., 27, 1138–1147 21. Spiegel, E. A., 1969 Semiconvection. Comments Astrophys. Space Phys., 1, 57–61. 22. Newell T.A., Von Driska P.M. 1986 Double Diffusive Effects on Solar Pond Gradient Zones. J. Sol. Energy Eng.;108(1):3-5. 23. Beckermann, C & Viskanta, R. 1988. Double-Diffusive Convection During Dendritic Solidification of a Binary Mixture. Phys. Chem. Hydrodynamics. 10. 195-213. 24. Spiegel, E. A.; Veronis, G. 1960 On the Boussinesq Approximation for a Compressible Fluid. Astrophysical Journal, 131, p.442 25. E. Jurjen Kranenborg, Henk A. Dijkstra, 1998 On the evolution of double-diffusive intrusions into a stably stratified liquid: a study of the layer merging process, Intl J. Heat Mass Transfer, 41, Issue 18, 2743-2756 26. W.J. Hiller, St. Koch, T.A. Kowalewski, F. Stella, 1993 Onset of natural convection in a cube, Intl J. Heat Mass Transfer, 36, Issue 13, 3251-3263 27. 歐李崇熙, 1994 雙擴散自然對流現象之熱質傳研究, 國立台灣大學碩士論文 28. 黃志輝, 1994 雙擴散系統之不穩定性分析, 國立台灣大學碩士論文 29. 龐立達, 1995 矩形容器內加熱圓柱之雙擴散對流現象研究, 國立台灣大學碩士論文 30. 網站資訊:http://cse.math.fcu.edu.tw/course/1/html/Chapter2_1.htm 31. 網站資訊:http://blog.sina.com.cn/s/blog_495e65cf0100njt4.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72941 | - |
| dc.description.abstract | 本論文採用有限元素法軟體COMSOL Multiphysics來模擬側向加熱分層流體中三維雙擴散對流的流場結構,由於模擬為三維模擬,觀察流場的方向區分為橫面(Transverse plane)和縱面(longitudinal plane),而在過去絕大多數的數值模擬均為觀察橫面的層狀對流,然而在縱面的雙擴散對流仍是不可忽略,在對流層中,當施加側壁溫度效應時,溫暖且富含溶質的流體沿著對流層的頂部從熱壁往冷壁流動,而冷且缺乏溶質的流體則沿著對流層的底部從冷壁往熱壁流動,這產生所謂的鹽指對流(salt-finger convection),其在縱面的方向上能被觀察,故本論文著重於層狀對流在三維空間下隨時間的發展,並探討在不同邊界條件下,對流層內的流場結構。
研究結果顯示,當改變容器的幾何外型或邊界條件時,一旦產生完全發展的層狀對流,且層狀對流能夠穩定存在於溶液中,此時流場對應到穩定邊界圖(stability boundary)為B區(salt-finger regime);然而,若是流場產生的層狀對流的厚度遠大於容器的高度時,流場的對流為單一環流,其類似於熱對流模型,此時流場對應到穩定邊界圖(stability boundary)為A區(thermal-diffusive regime)。在B區的流場中分別探討三個不同溫度差下,層狀對流隨時間的發展,結果顯示,當溫度差較小時,層狀對流的厚度相對較小,且達到完全發展時所需要的時間較長,而在縱面上會產生許多的小渦流,其軸平行於溫度梯度的方向;而當溫度差逐漸增加時,層狀對流的厚度相對變大,且達到完全發展時所需要的時間變得較短,由於層狀對流的厚度變大,在縱面上的小渦流有更多的空間在層狀對流發展,使得其形成長條狀渦流,且分布靠近上下水平邊界處。在A區的流場中,由於其類似於熱對流模型,故以單一環流呈現於流場中,而在縱面上的渦流則呈現一團紊亂,且其速度大小相對於橫面而言小很多。 | zh_TW |
| dc.description.abstract | This paper simulates and analyzes three dimensional double diffusive flow structure on a stratified fluid of lateral heating by the commercial software package-COMSOL Multiphysics using a finite element method. Since our studies are three dimensional simulations, we divide the flow field into the transverse plane and the longitudinal plane. In the past, most of numerical simulations generally studied the layered convection in the transverse plane. However, the double diffusive convection in the longitudinal plane is still not negligible. In each of the convection cells, after impulsively applying temperature difference, warm and solute-rich fluid flows from the hot to cold wall along the top of the cell while the return of the cool and solute-poor fluid is along the bottom of the cell. This situation is conducive to the so-called salt-finger convection and it can be observed in the longitudinal plane. Therefore, this paper focuses on the layered convection with the development of time in three dimensional space. And we discuss the flow structure of convection cell under different boundary conditions.
The result shows that once a fully developed convection layer is generated with changing the geometric shape or boundary conditions of the tank, and layered convection can be stably present in the solution, the flow field corresponds to the stability boundary of B region (salt-finger regime). However, if the thickness of layered convection is larger than the height of the tank, convection is a single circulation over all the tank, which is similar to the thermal convection model. The flow field corresponds to the stability boundary of A region (thermal-diffusive regime). In B region, we discuss the layered convection with the development of time at three different temperature differences. The results show that when the temperature difference is small, the thickness of layered convection is relatively small, and the time for fully developed flow becomes longer. In the longitudinal plane, a horizontal row of small vortices are generated in layered convection, whose axes aligned in the direction of the temperature gradient. Nevertheless, when the temperature difference is gradually increased, the thickness of layered convection is relatively large. And small vortices have more space to grow in layered convection. The vortices form a long vortex and are present in the upper and lower horizontal boundaries. In A region, because the flow is similar to the thermal convection model, it is presented as a single circulation in the flow field. In the longitudinal plane, vortices are turbulent and their speeds are relatively smaller than the transverse plane. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:11:07Z (GMT). No. of bitstreams: 1 ntu-108-R06543032-1.pdf: 26189044 bytes, checksum: c05fe62f8d54f4e5f24a5763a7c13f05 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.3 研究動機 7 1.4 研究方法 8 第二章 理論模型 9 2.1 物理模型與基本假設 9 2.2 Boussinesq approximation 10 2.3 統御方程式 11 2.4 邊界條件和初始條件 12 2.5 統御方程式之無因次化 12 2.6 長度尺度h 14 第三章 結果與討論 15 3.1 網格設定 15 3.1.1 簡介網格 15 3.1.2 網格數目 15 3.2 模擬程式之驗證 17 3.3 實驗結果之比較與分析 19 3.3.1 溫度差為10℃之比較 20 3.3.2 溫度差為7.3℃之比較 22 3.3.3 小結 25 3.4 線性穩定分析之流場模擬 25 3.4.1 穩定邊界圖(stability boundary) 25 3.4.2 改變溫度差∆T 28 3.4.3 改變最大最小濃度差∆S 30 3.4.4 改變模型高度H 32 3.4.5 改變模型寬度L 35 3.4.6 特定參數探討 37 3.5 A區(thermal-diffusive regime)的流場討論 38 3.6 B區(salt-finger regime)的流場討論 42 3.6.1 Case1:∆T=11℃ 42 3.6.2 Case2:∆T=18℃ 46 3.6.3 Case3:∆T=27℃ 50 3.6.4 動能曲線圖之比較 54 第四章 結論與未來展望 55 4.1 結論 55 4.2 未來展望 56 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 雙擴散 | zh_TW |
| dc.subject | 鹽指對流 | zh_TW |
| dc.subject | 側向加熱 | zh_TW |
| dc.subject | 縱面 | zh_TW |
| dc.subject | longitudinal plane | en |
| dc.subject | double diffusion | en |
| dc.subject | salt finger | en |
| dc.subject | lateral heating | en |
| dc.subject | numerical simulation | en |
| dc.title | 側向加熱分層流體中鹽指對流的三維數值模擬 | zh_TW |
| dc.title | Three dimensional numerical simulation of salt-finger convection on a stratified fluid of lateral heating | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張敏興,羅安成 | |
| dc.subject.keyword | 數值模擬,雙擴散,鹽指對流,側向加熱,縱面, | zh_TW |
| dc.subject.keyword | numerical simulation,double diffusion,salt finger,lateral heating,longitudinal plane, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201901687 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 25.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
