Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72928
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳進庭(Chin-Tin Chen)
dc.contributor.authorMan Shenen
dc.contributor.author沈縵zh_TW
dc.date.accessioned2021-06-17T07:10:40Z-
dc.date.available2024-07-24
dc.date.copyright2019-07-24
dc.date.issued2019
dc.date.submitted2019-07-21
dc.identifier.citation1. Bougnoux, M. E.; Aanensen, D. M.; Morand, S.; Théraud, M.; Spratt, B. G.; d'Enfert, C., Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infect Genet Evol 2004, 4, (3), 243-52.
2. Eggimann, P.; Garbino, J.; Pittet, D., Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 2003, 3, (11), 685-702.
3. Tan, B. H.; Chakrabarti, A.; Li, R. Y.; Patel, A. K.; Watcharananan, S. P.; Liu, Z.; Chindamporn, A.; Tan, A. L.; Sun, P. L.; Wu, U. I.; Chen, Y. C.; Xu, Y. C.; Wang, H.; Sun, Z. Y.; Wang, L. L.; Lu, J.; Yang, Q.; Zhang, Q. Q.; Shao, H. F.; Liao, K.; Woo, P. C. Y.; Marak, R. S. K.; Kindo, A. J.; Wu, C. L.; Ho, M. W.; Lu, P. L.; Wang, L. S.; Riengchan, P., Incidence and species distribution of candidaemia in Asia: a laboratory-based surveillance study. Clin Microbiol Infect 2015, 21, (10), 946-953.
4. Chen, P. Y.; Chuang, Y. C.; Wang, J. T.; Sheng, W. H.; Yu, C. J.; Chu, C. C.; Hsueh, P. R.; Chang, S. C.; Chen, Y. C., Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Microbiol Immunol Infect 2014, 47, (2), 95-103.
5. Perlroth, J.; Spellberg, B.; Choi, B., Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 2007, 45, (4), 321-346.
6. Brown, D. H. J.; Giusani, A. D.; Chen, X.; Kumamoto, C. A., Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 1999, 34, (4), 651-662.
7. Sudbery, P. E., Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 2011, 9, (10), 737-48.
8. Albuquerque, P.; Casadevall, A., Quorum sensing in fungi-a review. Med. Mycol. 2012, 50, (4), 337-45.
9. Berman, J.; Sudbery, P. E., Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet. 2002, 3, (12), 918-30.
10. Lo, H. J.; Köhler, J. R.; DiDomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G. R., Nonfilamentous C. albicans Mutants Are Avirulent. Cell 1997, 90, (5), 939–949.
11. Dalle, F.; Wachtler, B.; L'Ollivier, C.; Holland, G.; Bannert, N.; Wilson, D.; Labruere, C.; Bonnin, A.; Hube, B., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 2010, 12, (2), 248-71.
12. Jayatilake, J. A.; Samaranayake, Y. H.; Cheung, L. K.; Samaranayake, L. P., Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med 2006, 35, (8), 484–491.
13. Scherwitz, C., Ultrastructure of human cutaneous candidosis. J Invest Dermatol 1982, 78, (3), 200-205.
14. Nantel, A.; Dignard, D.; Bachewich, C.; Harcus, D.; Marcil, A.; Bouin, A.-P.; Sensen, C. W.; Hogues, H.; van het Hoog, M.; Gordon, P.; Rigby, T.; Benoit, F.; Tessier, D. C.; Thomas, D. Y.; Whiteway, M., Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell. 2002, 13, (10), 3452-3465.
15. Lane, S.; Birse, C.; Zhou, S.; Matson, R.; Liu, H., DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 2001, 276, (52), 48988-48996.
16. Kadosh, D.; Johnson, A. D., Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell. 2005, 16, (6), 2903-2912.
17. Li, F.; Palecek, S. P., Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiol 2008, 154, (Pt 4), 1193-203.
18. Drago, L.; Mombelli, B.; De Vecchi, E.; Bonaccorso, C.; Fassina, M. C.; Gismondo, M. R., Candida albicans cellular internalization: a new pathogenic factor? Int J Antimicrob Agents 2000, 16, (4), 545–547.
19. Phan, Q. T.; Myers, C. L.; Fu, Y.; Sheppard, D. C.; Yeaman, M. R.; Welch, W. H.; Ibrahim, A. S.; Edwards, J. E., Jr.; Filler, S. G., Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLoS Biol 2007, 5, (3), e64.
20. Wachtler, B.; Citiulo, F.; Jablonowski, N.; Forster, S.; Dalle, F.; Schaller, M.; Wilson, D.; Hube, B., Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PloS one 2012, 7, (5), e36952.
21. Shapiro, R. S.; Robbins, N.; Cowen, L. E., Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol Mol Biol Rev 2011, 75, (2), 213.
22. Xu, X.-L.; Lee, R. T. H.; Fang, H.-M.; Wang, Y.-M.; Li, R.; Zou, H.; Zhu, Y.; Wang, Y., Bacterial Peptidoglycan Triggers Candida albicans Hyphal Growth by Directly Activating the Adenylyl Cyclase Cyr1p. Cell Host Microbe. 2008, 4, (1), 28-39.
23. Hall, R. A.; De Sordi, L.; MacCallum, D. M.; Topal, H.; Eaton, R.; Bloor, J. W.; Robinson, G. K.; Levin, L. R.; Buck, J.; Wang, Y.; Gow, N. A. R.; Steegborn, C.; Mühlschlegel, F. A., CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans. PLoS Pathog. 2010, 6, (11), e1001193.
24. Feng, Q.; Summers, E.; Guo, B.; Fink, G., Ras Signaling Is Required for Serum-Induced Hyphal Differentiation in Candida albicans. J Bacteriol 1999, 181, (20), 6339.
25. Leberer, E.; Harcus, D.; Dignard, D.; Johnson, L.; Ushinsky, S.; Thomas, D. Y.; Schröppel, K., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 2001, 42, (3), 673-687.
26. Zhu, Y.; Fang, H.-M.; Wang, Y.-M.; Zeng, G.-S.; Zheng, X.-D.; Wang, Y., Ras1 and Ras2 play antagonistic roles in regulating cellular cAMP level, stationary-phase entry and stress response in Candida albicans. Mol. Microbiol. 2009, 74, (4), 862-875.
27. Fang, H.-M.; Wang, Y., RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 2006, 61, (2), 484-496.
28. Rocha, C. R. C.; Schröppel, K.; Harcus, D.; Marcil, A.; Dignard, D.; Taylor, B. N.; Thomas, D. Y.; Whiteway, M.; Leberer, E., Signaling through Adenylyl Cyclase Is Essential for Hyphal Growth and Virulence in the Pathogenic Fungus Candida albicans. Mol. Biol. Cell. 2001, 12, (11), 3631-3643.
29. Klengel, T.; Liang, W.-J.; Chaloupka, J.; Ruoff, C.; Schröppel, K.; Naglik, J. R.; Eckert, S. E.; Mogensen, E. G.; Haynes, K.; Tuite, M. F.; Levin, L. R.; Buck, J.; Mühlschlegel, F. A., Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence. Curr Biol 2005, 15, (22), 2021-2026.
30. Bockmühl, D. P.; Krishnamurthy, S.; Gerads, M.; Sonneborn, A.; Ernst, J. F., Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol. Microbiol. 2001, 42, (5), 1243-1257.
31. Sonneborn, A.; Bockmühl, D. P.; Gerads, M.; Kurpanek, K.; Sanglard, D.; Ernst, J. F., Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol. 2000, 35, (2), 386-396.
32. Staab, J. F.; Bahn, Y.-S.; Sundstrom, P., Integrative, multifunctional plasmids for hypha-specific or constitutive expression of green fluorescent protein in Candida albicans. Microbiol 2003, 149, (10), 2977-2986.
33. Doedt, T.; Krishnamurthy, S.; Bockmühl, D. P.; Tebarth, B.; Stempel, C.; Russell, C. L.; Brown, A. J. P.; Ernst, J. F., APSES Proteins Regulate Morphogenesis and Metabolism in Candida albicans. Mol. Biol. Cell. 2004, 15, (7), 3167-3180.
34. Bockmühl, D. P.; Ernst, J. F., A Potential Phosphorylation Site for an A-Type Kinase in the Efg1 Regulator Protein Contributes to Hyphal Morphogenesis of Candida albicans. Genetics 2001, 157, (4), 1523.
35. Lo, H.-J.; Köhler, J. R.; DiDomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G. R., Nonfilamentous C. albicans Mutants Are Avirulent. Cell 1997, 90, (5), 939-949.
36. Stoldt, V. R.; Sonneborn, A.; Leuker, C. E.; Ernst, J. F., Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 1997, 16, (8), 1982.
37. Wang, A.; Raniga, P. P.; Lane, S.; Lu, Y.; Liu, H., Hyphal Chain Formation in Candida albicans: Cdc28-Hgc1 Phosphorylation of Efg1 Represses Cell Separation Genes. Mol Cell Biol 2009, 29, (16), 4406.
38. Russell, C. L.; Brown, A. J. P., Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 2005, 42, (8), 676-683.
39. White, S. J.; Rosenbach, A.; Lephart, P.; Nguyen, D.; Benjamin, A.; Tzipori, S.; Whiteway, M.; Mecsas, J.; Kumamoto, C. A., Self-Regulation of Candida albicans Population Size during GI Colonization. PLoS Pathog. 2007, 3, (12), e184.
40. Bachewich, C.; Thomas, D. Y.; Whiteway, M., Depletion of a Polo-like Kinase in Candida albicans Activates Cyclase-dependent Hyphal-like Growth. Mol. Biol. Cell. 2003, 14, (5), 2163-2180.
41. Andaluz, E.; Ciudad, T.; Gómez-Raja, J.; Calderone, R.; Larriba, G., Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol. Microbiol. 2006, 59, (5), 1452-1472.
42. Shapiro, R. S.; Uppuluri, P.; Zaas, A. K.; Collins, C.; Senn, H.; Perfect, J. R.; Heitman, J.; Cowen, L. E., Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Curr Biol 2009, 19, (8), 621-629.
43. Schweizer, A.; Rupp, S.; Taylor, B. N.; Röllinghoff, M.; Schröppel, K., The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 2000, 38, (3), 435-445.
44. Nobile, C. J.; Andes, D. R.; Nett, J. E.; Smith, F. J., Jr.; Yue, F.; Phan, Q.-T.; Edwards, J. E., Jr.; Filler, S. G.; Mitchell, A. P., Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathog. 2006, 2, (7), e63.
45. Nobile, C. J.; Mitchell, A. P., Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Curr Biol 2005, 15, (12), 1150-1155.
46. Bassilana, M.; Blyth, J.; Arkowitz, R. A., Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans. Eukaryot Cell 2003, 2, (1), 9.
47. Csank, C.; Schröppel, K.; Leberer, E.; Harcus, D.; Mohamed, O.; Meloche, S.; Thomas, D. Y.; Whiteway, M., Roles of the Candida albicans Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis. Infect Immun 1998, 66, (6), 2713.
48. Köhler, J. R.; Fink, G. R., Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 1996, 93, (23), 13223.
49. Leberer, E.; Harcus, D.; Broadbent, I. D.; Clark, K. L.; Dignard, D.; Ziegelbauer, K.; Schmidt, A.; Gow, N. A. R.; Brown, A. J. P.; Thomas, D. Y., Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 1996, 93, (23), 13217.
50. Huang, H.; Harcus, D.; Whiteway, M., Transcript profiling of a MAP kinase pathway in C. albicans. Microbiol. Res 2008, 163, (4), 380-393.
51. Liu, H.; Kohler, J.; Fink, G. R., Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Sci 1994, 266, (5191), 1723.
52. Sharkey, L. L.; McNemar, M. D.; Saporito-Irwin, S. M.; Sypherd, P. S.; Fonzi, W. A., HWP1 Functions in the Morphological Development of Candida albicans Downstream of EFG1, TUP1, and RBF1. J Bacteriol 1999, 181, (17), 5273.
53. Argimón, S.; Wishart, J. A.; Leng, R.; Macaskill, S.; Mavor, A.; Alexandris, T.; Nicholls, S.; Knight, A. W.; Enjalbert, B.; Walmsley, R.; Odds, F. C.; Gow, N. A. R.; Brown, A. J. P., Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans. Eukaryot Cell 2007, 6, (4), 682.
54. Leng, P.; Lee, P. R.; Wu, H.; Brown, A. J. P., Efg1, a Morphogenetic Regulator in Candida albicans, Is a Sequence-Specific DNA Binding Protein. J Bacteriol 2001, 183, (13), 4090.
55. Román, E.; Alonso-Monge, R.; Pla, J.; Li, D.; Gong, Q.; Calderone, R., The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res 2009, 9, (6), 942-955.
56. Wang, X.; Chang, P.; Ding, J.; Chen, J., Distinct and Redundant Roles of the Two MYST Histone Acetyltransferases Esa1 and Sas2 in Cell Growth and Morphogenesis of Candida albicans. Eukaryot Cell 2013, 12, (3), 438.
57. Lee, J.-E.; Oh, J.-H.; Ku, M.; Kim, J.; Lee, J.-S.; Kang, S.-O., Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett 2015, 589, (4), 513-520.
58. Wurtele, H.; Tsao, S.; Lépine, G.; Mullick, A.; Tremblay, J.; Drogaris, P.; Lee, E.-H.; Thibault, P.; Verreault, A.; Raymond, M., Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med. 2010, 16, 774.
59. Lu, Y.; Su, C.; Mao, X.; Raniga, P. P.; Liu, H.; Chen, J., Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans. Mol. Biol. Cell. 2008, 19, (10), 4260-4272.
60. Chang, P.; Fan, X.; Chen, J., Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol 2015, 81, 132-141.
61. Lopes da Rosa, J.; Boyartchuk, V. L.; Zhu, L. J.; Kaufman, P. D., Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci U S A 2010, 107, (4), 1594.
62. Tscherner, M.; Stappler, E.; Hnisz, D.; Kuchler, K., The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans. Mol. Microbiol. 2012, 86, (5), 1197-1214.
63. Lu, Y.; Su, C.; Wang, A.; Liu, H., Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance. PLoS Biol 2011, 9, (7), e1001105.
64. Lu, Y.; Su, C.; Liu, H., A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans. PLoS Pathog. 2012, 8, (4), e1002663.
65. Davey, M. E.; O' tool, G. A., Microbial biofilms: from ecology to molecular genetics. Crit Rev Microbiol 2000, 64, (4), 847-867.
66. Kojic, E. M.; Darouiche, R. O., Candida Infections of Medical Devices. Clin Microbiol Rev 2004, 17, (2), 255.
67. Nobile, C., The Role of Candida albicans Biofilms in Human Disease. In 2013; pp 1-24.
68. Ozkan, S.; Kaynak, F.; Kalkanci, A.; Abbasoglu, U.; Kustimur, S., Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents. Mem Inst Oswaldo Cruz 2005, 100, (3), 319-324.
69. Andes, D. R.; Safdar, N.; Baddley, J. W.; Pappas, P. G.; Reboli, A. C.; Rex, J. H.; Sobel, J. D.; Playford, G.; Kullberg, B. J., Impact of Treatment Strategy on Outcomes in Patients with Candidemia and Other Forms of Invasive Candidiasis: A Patient-Level Quantitative Review of Randomized Trials. Clin Infect Dis 2012, 54, (8), 1110-1122.
70. Sardi, J. C.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A. M.; Mendes Giannini, M. J., Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013, 62, (Pt 1), 10-24.
71. Blankenship, J. R.; Mitchell, A. P., How to build a biofilm: a fungal perspective. Curr Opin Microbiol 2006, 9, (6), 588-94.
72. Gulati, M.; Nobile, C. J., Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 2016, 18, (5), 310-321.
73. Chandra, J.; Kuhn, D. M.; Mukherjee, P. K.; Hoyer, L. L.; McCormick, T.; Ghannoum, M. A., Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance. J Bacteriol 2001, 183, (18), 5385.
74. Nobile, C. J.; Fox, E. P.; Nett, J. E.; Sorrells, T. R.; Mitrovich, Q. M.; Hernday, A. D.; Tuch, B. B.; Andes, D. R.; Johnson, A. D., A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell 2012, 148, (1), 126-138.
75. Ramage, G.; Wickes, B. L.; López-Ribot, J. L.; VandeWalle, K., The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 2002, 214, (1), 95-100.
76. Cohen, B. E., Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharm 1998, 162, (1-2), 95-106.
77. Akyol Erikci, A.; Ozyurt, M.; Terekeci, H.; Ozturk, A.; Karabudak, O.; Oncu, K., Oesophageal aspergillosis in a case of acute lymphoblastic leukaemia successfully treated with caspofungin alone due to liposomal amphotericin B induced severe hepatotoxicity. Mycoses 2009, 52, (1), 84-86.
78. Vermes, A.; Guchelaar, H. J.; Dankert, J., Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000, 46, (2), 171-9.
79. Kriengkauykiat, J.; Ito, J. I.; Dadwal, S. S., Epidemiology and treatment approaches in management of invasive fungal infections. J Clin Epidemiol 2011, 3, 175-191.
80. Hof, H., Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? Drug Resist Upda 2008, 11, (1-2), 25-31.
81. Pfaller, M. A.; Diekema, D. J.; Gibbs, D. L.; Newell, V. A.; Ellis, D.; Tullio, V.; Rodloff, A.; Fu, W.; Ling, T. A.; Group, G. A. S., Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by CLSI Standardized Disk Diffusion. J Clin Microbiol 2010, 48, (4), 1366-1377.
82. Nucci, M., Use of antifungal drugs in hematology. Rev Bras Hematol Hemoter 2012, 34, (5), 383-391.
83. Lane, N.; Martin, W., The energetics of genome complexity. Nat 2010, 467, (7318), 929-934.
84. Brown, G. D.; Denning, D. W.; Gow, N. A. R.; Levitz, S. M.; Netea, M. G.; White, T. C., Hidden Killers: Human Fungal Infections. Sci Transl Med 2012, 4, (165), 165rv13.
85. Shingu-Vazquez, M.; Traven, A., Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell 2011, 10, (11), 1376-1383.
86. Watanabe, T.; Ogasawara, A.; Mikami, T.; Matsumoto, T., Hyphal formation of Candida albicans is controlled by electron transfer system. Biochem Biophys Res Commun 2006, 348, (1), 206-211.
87. Boguski, M. S.; McCormick, F., Proteins regulating Ras and its relatives. Nat 1993, 366, 643-654.
88. Fang, H. M.; Wang, Y., RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 2006, 61, 484-496.
89. Cassola, A.; Parrot, M.; Silberstein, S.; Magee, B. B.; Passeron, S.; Giasson, L.; Cantore, M. L., Candida albicans Lacking the Gene Encoding the Regulatory Subunit of Protein Kinase A Displays a Defect in Hyphal Formation and an Altered Localization of the Catalytic Subunit. Eukaryot Cell 2004, 3, (1), 190-199.
90. Grahl, N.; Demers, E. G.; Lindsay, A. K.; Harty, C. E.; Willger, S. D.; Piispanen, A. E.; Hogan, D. A., Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways. PLoS Pathog. 2015, 11, (8), e1005133.
91. Leberer, E., Harcus, D., Dignard, D., Johnson, L., Ushinsky, S., Thomas, D.Y., Schröppel, K., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 2001, 42, (3), 673–687.
92. Huang, G.; Yi, S.; Sahni, N.; Daniels, K. J.; Srikantha, T.; Soll, D. R., N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans. PLoS Pathog. 2010, 6, (3), e1000806.
93. Thomas, E.; Roman, E.; Claypool, S.; Manzoor, N.; Pla, J.; Panwar, S. L., Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob. Agents Chemother. 2013, 57, (11), 5580-5599.
94. Shahi, P.; Moye-Rowley, W. S., Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim Biophys Acta 2009, 1794, (5), 852-859.
95. Geraghty, P.; Kavanagh, K., Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans. J Pharm Pharmacol 2003, 55, (2), 179-184.
96. Geraghty, P.; Kavanagh, K., Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Arch Microbiol. 2003, 179, (4), 295-300.
97. Chen, H.; Calderone, R.; Sun, N.; Wang, Y.; Li, D., Caloric restriction restores the chronological life span of the goa1 null mutant of Candida albicans in spite of high cell levels of ROS. Fungal Genet Biol 2012, 49, (12), 1023-1032.
98. Qu, Y.; Jelicic, B.; Pettolino, F.; Perry, A.; Lo, T. L.; Hewitt, V. L.; Bantun, F.; Beilharz, T. H.; Peleg, A. Y.; Lithgow, T.; Djordjevic, J. T.; Traven, A., Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence. Eukaryot Cell 2012, 11, (4), 532-544.
99. Chang, C. C.; Wu, J.-Y.; Chang, T.-C., A carbazole derivative synthesis for stabilizing the quadruplex structure. J Chin Chem Soc 2003, 50, 185-188.
100. Huang, F.-C.; Chang, C.-C.; Lou, P.-J.; Kuo, I. C.; Chien, C.-W.; Chen, C.-T.; Shieh, F.-Y.; Chang, T.-C.; Lin, J.-J., G-Quadruplex Stabilizer 3,6-Bis(1-Methyl-4-Vinylpyridinium)Carbazole Diiodide Induces Accelerated Senescence and Inhibits Tumorigenic Properties in Cancer Cells. Mol Cancer Res 2008, 6, (6), 955.
101. Kang, C.-C.; Chang, C.-C.; Chang, T.-C.; Liao, L.-J.; Lou, P.-J.; Xie, W.; Yeung, E. S., A handheld device for potential point-of-care screening of cancer. Analyst 2007, 132, (8), 745-749.
102. Kang, C.-C.; Huang, W.-C.; Kouh, C.-W.; Wang, Z.-F.; Cho, C.-C.; Chang, C.-C.; Wang, C.-L.; Chang, T.-C.; Seemann, J.; Huang, L. J.-s., Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity. Integr. Biol. 2013, 5, (10), 1217-1228.
103. Huang, W.-C.; Tseng, T.-Y.; Chen, Y.-T.; Chang, C.-C.; Wang, Z.-F.; Wang, C.-L.; Hsu, T.-N.; Li, P.-T.; Chen, C.-T.; Lin, J.-J.; Lou, P.-J.; Chang, T.-C., Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res 2015, 43, (21), 10102-10113.
104. Rajakumar, P.; Sekar, K.; Shanmugaiah, V.; Mathivanan, N., Synthesis of novel carbazole based macrocyclic amides as potential antimicrobial agents. Eur. J. Med. Chem. 2009, 44, (7), 3040-3045.
105. Institute., C. a. L. S., Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing. 1st ed., CLSI standard M59. 2016: Clinical and Laboratory Standards Institute, Wayne, PA, USA. 2008.
106. Blankenship, J. R.; Mitchell, A. P., How to build a biofilm: a fungal perspective. Current Opinion in Microbiology 2006, 9, (6), 588-594.
107. Donlan, R. M.; Costerton, J. W., Biofilms: survival mechanisms of clinically relevant microorganisms. Crit Rev Microbiol 2002, 15, (2), 167-193.
108. Kojic, E. M.; Darouiche, R. O., Candida Infections of Medical Devices. Crit Rev Microbiol 2004, 17, (2), 255-267.
109. Ramage, G.; Saville, S. P.; Thomas, D. P.; Lopez-Ribot, J. L., Candida biofilms: an update. Eukaryot Cell 2005, 4, (4), 633-8.
110. Huang, X.; Chen, X.; He, Y.; Yu, X.; Li, S.; Gao, N.; Niu, L.; Mao, Y.; Wang, Y.; Wu, X.; Wu, W.; Wu, J.; Zhou, D.; Zhan, X.; Chen, C., Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans. PLoS Pathog. 2017, 13, (6), e1006414.
111. Kim, J.; Lee, J.-E.; Lee, J.-S., Histone deacetylase-mediated morphological transition in Candida albicans. J. Microbio 2015, 53, (12), 805-811.
112. Kuchler, K.; Jenull, S.; Shivarathri, R.; Chauhan, N., Fungal KATs/KDACs: A New Highway to Better Antifungal Drugs? PLoS Pathog. 2016, 12, (11), e1005938.
113. Zhou, X.; Qian, G.; Yi, X.; Li, X.; Liu, W., Systematic Analysis of the Lysine Acetylome in Candida albicans. J Proteome Res 2016, 15, (8), 2525-2536.
114. Kim, S. C.; Sprung, R.; Chen, Y.; Xu, Y.; Ball, H.; Pei, J.; Cheng, T.; Kho, Y.; Xiao, H.; Xiao, L.; Grishin, N. V.; White, M.; Yang, X.-J.; Zhao, Y., Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey. Mol Cell 2006, 23, (4), 607-618.
115. Han, J.; Lee, J. D.; Bibbs, L.; Ulevitch, R. J., A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Sci 1994, 265, (5173), 808.
116. Tsai, Y.-J.; Tsai, T.; Peng, P.-C.; Li, P.-T.; Chen, C.-T., Histone acetyltransferase p300 is induced by p38MAPK after photodynamic therapy: the therapeutic response is increased by the p300HAT inhibitor anacardic acid. Free Radic Biol Med 2015, 86, 118-132.
117. Meletiadis, J.; Antachopoulos, C.; Stergiopoulou, T.; Pournaras, S.; Roilides, E.; Walsh, T. J., Differential fungicidal activities of amphotericin B and voriconazole against Aspergillus species determined by microbroth methodology. Antimicrob. Agents Chemother. 2007, 51, (9), 3329.
118. Pfaller, M. A.; Sheehan, D. J.; Rex, J. H., Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev 2004, 17, (2), 268.
119. Biswas, S.; Van Dijck, P.; Datta, A., Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007, 71, (2), 348-376.
120. Zou, H.; Fang, H.-M.; Zhu, Y.; Wang, Y., Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. Mol. Microbiol. 2010, 75, (3), 579-591.
121. Cleary, I. A.; Lazzell, A. L.; Monteagudo, C.; Thomas, D. P.; Saville, S. P., BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol. Microbiol. 2012, 85, (3), 557-573.
122. Braun, B. R.; Kadosh, D.; Johnson, A. D., NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J. 2001, 20, (17), 4753-4761.
123. Kayingo, G.; Wong, B., The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiol 2005, 151, (9), 2987-2999.
124. Alonso-Monge, R.; Navarro-García, F.; Román, E.; Negredo, A. I.; Eisman, B.; Nombela, C.; Pla, J., The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2003, 2, (2), 351-361.
125. Liang, S.-H.; Cheng, J.-H.; Deng, F.-S.; Tsai, P.-A.; Lin, C.-H., A Novel Function for Hog1 Stress-Activated Protein Kinase in Controlling White-Opaque Switching and Mating in Candida albicans. Eukaryot Cell 2014, 13, (12), 1557.
126. Eisman, B.; Alonso-Monge, R.; Román, E.; Arana, D.; Nombela, C.; Pla, J., The Cek1 and Hog1 Mitogen-Activated Protein Kinases Play Complementary Roles in Cell Wall Biogenesis and Chlamydospore Formation in the Fungal Pathogen Candida albicans. Eukaryot Cell 2006, 5, (2), 347.
127. Mishra, P. K.; Baum, M.; Carbon, J., DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans. Proc Natl Acad Sci U S A.Analyst 2011, 108, (29), 11965-11970.
128. Loftsson, T.; Másson, M.; Brewster, M. E., Self-Association of Cyclodextrins and Cyclodextrin Complexes. J Pharm Sci 2004, 93, (5), 1091-1099.
129. Noble, S. M.; Gianetti, B. A.; Witchley, J. N., Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol. 2016, 15, 96.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72928-
dc.description.abstract念珠菌是造成院內感染的重要致病菌,在臨床上念珠菌抗藥性問題也益發嚴重。目前所使用的抗真菌藥物種類不多,加上這些抗真菌劑之副作用強而造成使用上的限制,因此開發新作用機制的抗真菌藥物有其必要與急迫性。目前研究指出粒線體可能是一個良好的抗真菌藥物標的,其原因是由於粒線體參與在真核細胞內廣泛的生理調控角色,如各式各樣的生理代謝,包括了致病因子的調控。在確認小分子化合物BMVC-12C-P是能夠專一的進入粒線體並以粒線體做為主要攻擊標的而造成白色念珠菌粒線體的失能後,我們利用BMVC-12C-P作為工具,並配合白色念珠菌突變菌株庫的使用來探討白色念珠菌粒線體的失能對菌體造成的生物效應。本研究已經建立有效篩選突變菌株庫的篩選模式並在轉錄因子和激酶之突變菌株庫篩選出會受到BMVC-12C-P所影響的突變菌株。由於對於粒線體與致病機制的關係較感興趣,故將篩選出的突變菌株依其所參與的致病機制做歸類,結果以參與在菌絲的生成相關機制為大宗,故本研究進一步挑選菌絲作為探討主軸。我們發現BMVC-12C-P能夠抑制菌絲與生物膜生成之能力,並進一步以Q-PCR確認BMVC-12C-P能透過抑制菌絲轉錄因子EFG1、BRG1、CPH1、CPH2和TEC1的mRNA表現,然而其不透過Hog1MAPK訊息傳遞路徑去調控這些受到BMVC-12C-P所影響的菌絲轉錄因子。未來希望能夠更進一步了解粒線體是透過怎樣的訊息傳遞路徑來調控這些可能參與在菌絲生成的轉錄因子,並且去了解這些轉錄因子在白色念珠菌菌絲生成機制中所扮演的角色,以利未來我們能更深入了解白色念珠菌粒線體參與在菌絲調控的致病機制,更可以做為未來作為新抗真菌藥物發展之重要基石。於此,本研究亦探討BMVC-12C-P對不同標準念珠菌屬及來自臨床檢體中所篩選出來的具抗藥性之念珠菌屬的藥物感受性,發現BMVC-12C-P具有相當優異的殺菌能力,具有發展成良好抗真菌劑之潛力。zh_TW
dc.description.abstractCandida species are important pathogens causing nosocomial infections and the prob-lem of antifungal drugs resistance in clinical is also a serious problem. At present, we do not have many choices for antifungal agents to use so it is necessary and urgent to develop new antifungal drugs. In this study, we explored BMVC-12C-P can specifically enter the mito-chondria to cause the mitochondrial dysfunction and we also confirmed the mitochondria is the main target of BMVC-12C-P. Therefore, BMVC-12C-P was used as a tool and com-bined with C. albicans mutant library to investigate the biological effects of mitochondrial dysfunction induced by BMVC-12C-P. We had established the optimal screening model to screen and selected the candidates from mutant library of transcription factors and kinases. Because we are interested in the relationship between mitochondria and pathogenic mecha-nisms, candidates are classified according to the pathogenic mechanisms involved. As a re-sult, the pathogenic mechanism of candidates involved in the formation of hyphae was most, so we selected the regulation of hyphae to explore. We confirmed BMVC-12C-P can inhibit the formation of hyphae and biofilm. We also found the ability of hyphae switch was sup-pressed which correlated with the reduced mRNA expressions of genes involved in hyphal formation (EFG1、BRG1、CPH1、CPH2 and TEC1) and not through Hog1MAPK pathway to regulate them. In this way, we hope to further understand the mechanism of BMVC-12C-P on the regulation of hyphae and can be used as an important cornerstone for the development of new antifungal drugs in the future. Moreover, we also found that BMVC-12C-P displayed the strongest antifungal activities to against Candida species and even Fluconazole-resistant clinical isolates of Candida species that indicated BMVC-12C-P can be used as a highly potential antifungal agent.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:10:40Z (GMT). No. of bitstreams: 1
ntu-108-D03B22007-1.pdf: 5848122 bytes, checksum: a62980d74c8e719cfd43b13c00ad6ee0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 IX
表目錄 XI
第一章 文獻探討 1
1.1白色念珠菌 1
1.2白色念珠菌致病能力 1
1.2.1菌絲與侵入性過程 2
1.2.2菌絲型態調控機制 2
1.2.2.1 Protein kinase A signaling (PKA) 2
1.2.2.2 Mitogen-activated protein kinase (MAPK) 5
1.2.2.3 Chromatin modification 5
1.2.2.3.1 組蛋白乙醯化酶 (histone acetyltransferase,HAT) 5
1.2.2.3.2 组蛋白去乙醯化酶 (histone deacetylase,HDAC) 6
1.2.3菌絲與生物膜之關係 6
1.3臨床抗真菌劑使用及缺點 8
1.3.1抗真菌藥物種類 8
1.3.2抗真菌藥物的缺點 8
1.4 白色念珠菌粒線體 9
1.4.1粒線體調控菌絲生成 10
1.4.2粒線體調控抗藥性能力 10
1.4.2.1 藥物輸出幫浦的活性 10
1.4.2.2 細胞膜的穩定性 11
1.4.2.3 細胞壁的完整性 11
1.5 BMVC-12C-P 11
第二章 研究動機 13
第三章 材料與方法 15
3.1 菌種來源與保存 15
3.1.1菌種來源 15
3.2 藥品與儀器 15
3.2.1白色念珠菌培養試劑 15
3.2.2藥品 16
3.2.3儀器 17
3.3 實驗方法 18
3.3.1 BMVC-12C-P原液配製 18
3.3.2以雷射共軛焦顯微鏡觀察BMVC-12C-P於白色念珠菌位置 18
3.3.3以雷射共軛焦顯微鏡觀察白色念珠菌粒線體之結構 18
3.3.4建立rho-之突變細胞 19
3.3.5藥物毒殺效果測試 19
3.3.6 Q-PCR定量分析 19
3.3.7白色念珠菌突變菌株庫培養 19
3.3.8建立篩選白色念珠菌突變菌株庫方式 20
3.3.9誘發菌絲型態觀察 20
3.3.10 mRNA表達分析 21
3.3.10.1 RNA萃取 (RNA extraction) 21
3.3.10.2反轉錄 (Reverse Transcription, RT) 21
3.3.10.3 Q-PCR定量分析 22
3.3.11西方墨點法 (Western bloting) 22
3.3.12粒線體活性分析 (MTT assay) 24
3.3.13生物膜形成能力 24
3.3.14 BMVC-12C-P對於標準念珠菌菌株的藥物感受性測試 25
3.3.15 統計分析 25
第四章 結果 26
4.1 BMVC-12C-P對白色念珠菌粒線體之影響 26
4.1.1 BMVC-12C-P作用於白色念珠菌之位置 26
4.1.2 BMVC-12C-P破壞白色念珠菌粒線體結構 26
4.1.3粒線體為BMVC-12C-P之主要殺菌作用標的 26
4.1.4 BMVC-12C-P影響粒線體複製能力 27
4.2 BMVC-12C-P的作用機轉探討 (Mechanism of Action,MOA) 28
4.2.1以突變菌株庫為工具探討BMVC-12C-P因應粒線體失能而受到影響 (活化或抑制) 的分子機轉 (包括訊息傳遞路徑及轉錄因子)。 28
4.2.1.1 BMVC-12C-P對於突變菌株庫之標準株的藥物感受性測試 28
4.2.1.2 建立以BMVC-12C-P篩選白色念珠菌突變菌株庫之適當方式 29
4.2.1.3 以BMVC-12C-P篩選白色念珠菌轉錄因子突變菌株庫 30
4.2.1.4 文獻探討以及分析候選基因的致病能力歸類 30
4.2.2 BMVC-12C-P造成粒線體失能與菌絲生成調控相關分子機轉 (包括訊息傳遞路徑及轉錄因子) 之探討。 31
4.2.2.1 BMVC-12C-P對菌絲的影響 31
4.2.2.2 BMVC-12C-P調控菌絲之Kinase cascade 32
4.2.2.3 BMVC-12C-P以乙醯化機制調控菌絲之角色 33
4.2.2.4 Anacardic acid對白色念珠菌之影響 34
4.2.2.4.1 Anacardic acid與BMVC-12C-P合併對白色念珠菌敏感性之影響 34
4.2.2.4.2 Anacardic acid與BMVC-12C-P合併對白色念珠菌粒線體功能之影響 35
4.2.2.4.3 Anacardic acid與BMVC-12C-P合併對白色念珠菌粒線體活性之影響 35
4.2.2.5 BMVC-12C-P對生物膜的影響 36
4.3 BMVC-12C-P對於標準念珠菌菌株的藥物感受性測試 36
第五章 討論 38
5.1 BMVC-12C-P造成粒線體失能的機制探討 38
5.2 BMVC-12C-P對菌絲的影響 39
5.3 BMVC-12C-P對Hog1MAPK路徑的影響 41
5.4 BMVC-12C-P是否利用甲基化進而調控菌絲 42
5.5 BMVC-12C-P具殺菌效果之抗真菌劑 42
第六章 結論 44
第七章 未來研究方向 45
7.1 BMVC-12C-P造成粒線體失能的機制探討 45
7.2探討BMVC-12C-P所造成的死亡路徑 45
7.3探討BMVC-12C-P抑制菌絲之路徑 46
7.4利用突變菌株庫發現所得探索菌絲的調控機制 46
7.5 BMVC-12C-P對白色念珠菌致病機制之功能性影響 47
7.6 BMVC-12C-P是否能夠透過乙醯化進而調控菌絲 48
7.7 BMVC-12C-P-β-環糊精的明膠海綿敷料 48
圖 50
表 79
附圖 82
參考文獻 93
dc.language.isozh-TW
dc.titleBMVC-12C-P誘導白色念珠菌粒線體失能導致之生物效應及相關分子機制探討zh_TW
dc.titleBiological consequences and mechanistic mechanisms of mitochondrial dysfunction induced by BMVC-12C-P in Candida albicansen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.coadvisor林晉玄(Ching-Hsuan Lin)
dc.contributor.oralexamcommittee張大釗(Ta-Chau Chang),陳宜君(Yee-Chun Chen),吳?承(Hsuan-Chen Wu)
dc.subject.keyword白色念珠菌,粒線體,BMVC-12C-P,菌絲,zh_TW
dc.subject.keywordCandida albicans,mitochondria,BMVC-12C-P,hyphae,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201901707
dc.rights.note有償授權
dc.date.accepted2019-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
5.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved