Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范致豪(Chihhao Fan)
dc.contributor.authorPei-Wen Zhangen
dc.contributor.author張沛文zh_TW
dc.date.accessioned2021-06-17T07:10:00Z-
dc.date.available2024-08-05
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-22
dc.identifier.citation王一雄、陳尊賢、李達源,1995。 土壤污染學,國立空中大學印行。
王一雄,1997。 土壤環境污染與農藥,明文書局。
行政院環境保護署「土壤與地下水污染整治網站」,2018。https://sgw.epa.gov.tw/public/law/law-01,檢索日期:2018 年6月26 日。
行政院環境保護署,土壤採樣方法,NIEA S102.63B,2013。
行政院環境保護署,土壤水分含量測定方法-重量法,NIEA S280.61C,2010。
行政院環境保護署,土壤酸鹼值(pH值)測定方法-電極法,NIEA S410.62C,2011。
行政院環境保護署,土壤重金屬檢測方法-微波輔助王水消化法,NIEA S301.60B,2013。
行政院環境保護署,0.1N鹽酸部分萃取火焰式原子吸收光譜法,NIEA S302.60T,1991。
行政院農業委員會農業試驗所,鮑氏土壤機械分析法,1980。
行政院農業委員會農業試驗所,土壤電導度測定方法,TARI S101.1B,2011。
江東法,2006。 重金屬土壤及地下水污染預防與整治技術手冊,經濟部工業局。
江坤育,2017。 以化學還原提升電動力法修復重金屬污染農地土壤品質之研究,國立宜蘭大學環境工程學系碩士論文。
朱育賢,2006。 淋洗對污染農地重金屬的去除效果及其對土壤肥力之衝擊,國立中興大學環境工程學系碩士論文。
林浩潭,2005。 重金屬及微量元素對植物之影響,台灣農家要覽(三)農作篇。
屏東縣政府「觀光傳播處」,2018。 https://www.pthg.gov.tw/plantou/Default.aspx,檢索日期:2018 年6月26 日。
桃園市政府「經濟發展局」,2018。 http://edb.tycg.gov.tw/,檢索日期:2018 年6月26 日。
陳冠博,2003。 受污染農地重金屬存在型態與環境因子之相關性研究,逢甲大學環境工程與科學系碩士論文。
陳尊賢,2000。 受重金屬污染土壤之整治技術與經驗,土壤及地下水污染整治技術研究論文集,第145-162頁。
徐明麟,1997。 克利金法預測土壤重金屬污染範圍,國立台灣大學農業工程學系碩士論文。
徐貴新,2006。 土壤污染與復育技術概論,高立圖書有限公司出版。
袁又罡,2007。 固定化微生物對植物復育銅污染土壤之研究,國立雲林科技大學環境與安全工程學系碩士論文。
郭磊,2014。 改性稻桿對廢水中鉛、鎘的吸附特徵及其機制研究碩士論文,瀋陽農業大學碩士論文。
國家衛生研究院「國家環境毒物研究中心」,2018。 http://nehrc.nhri.org.tw/toxic/檢索日期:2018 年6月26 日。
張書奇,2017。 以快速玻璃化進行重金屬污染底泥整治技術研發,國立中興大學環境工程學系碩士論文。
張尊國,2002。 臺灣地區土壤污染現況與整治政策分析,財團法人國家政策研究基金會-智庫,永續(析)091-021號。
許正一、陳尊賢、蔡呈奇,1999。 台灣農地土壤品質指標之選擇與土壤品質評估方法之架構,土壤與環境2(1): 77-88。
廖秀媛,2006。市售包裝果汁黃酮及有機酸含量之探討,國立台灣海洋大學食品科學系碩士論文。
經濟部工業局 ,2005。 堆肥技術與設備手冊及案例彙編,臺灣綠色生產力基金會出版。
楊磊,2006。 以植物修復技術處理遭受重金屬鎘汙染土壤之研究,國立中山大學海洋環境及工程學系碩士論文。
鄭昀燕,2015。 重金屬污染土壤清洗試驗評估,國立中興大學環境工程系碩士論文。
蔡人傑,2003。 蔬菜廢棄物好氧生物降解,國立高雄第一科技大學環境與安全衛生工程系碩士論文。
駱錫能、陳翠瑤,2014。 分析化學實驗(第三版),新文京開發出版股份有限公司。
譚光群,2011。 小麥桔桿對水中Pb2+和Cd2+的吸附特性,環境科學期刊。
謝儒樑,2003。 應用汞離子結合蛋白MerP於重金屬生物修復上之研究,國立中興大學植物學系碩士論文。
Alan W., (1993). Soil and the environment. Published by the press syndicate of the university of cambridge, 17-18.
Amir S., Jouraiphy A., Meddich A., Gharous M. E., Winterton P., Hafidi M. H., (2010). Structural study of humic acids during composting of activated sludge-green waste:Elemental analysis, FTIR and 13C NMR. Journal of hazardous materials, 177(1-3): 524–529.
Angumeenal A.R., Venkappayya D., (2013). An overview of citric acid production. LWT - Food science and technology, 50(2): 367-370.
Ashraf A., Bibi I., Niazi N. K., Ok Y. S., Murtaza G., Shahid M., Kunhikrishnan A., Li D., Mahmood T., (2017). Chromium(VI) sorption efficiency of acid-1 activated banana peel over organo-montmorillonite in aquatic aolutions. International journal phytoremediation, 19(7): 605-613.
Austury A., Shahid M., Xiong T., Castrec M., Payre V., Niazi N. K., Sabir M., Dumat C., (2014). Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: Environmental and sanitary consequences. Journal of soils and sediments, 14(4): 666–678.
Bassi R., Prasher S. O. and Simpson B. K., (2000). Extraction of metals from a contaminated sand soil using citric acid. Environmental Progress, 19: 275-282.
Bernal M. P., Alburquerque J. A., Moral R., (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, 100(22): 5444-5453.
Brown S. L., Angle J. S. and Jacobs L. W., (1998). Beneficial Co-utilization of agricultural, municipal and industrial by-products. Kluwer academic publishers, 415-422.
Buasri A., Chaiyut N., Tapang K., Jaroensin S., Panphrom S., (2012). Equilibrium and kinetic Studies of biosorption of Zn(Ⅱ) Ions from wastewater using modified corn cob. APCBEE Procedia, 3: 60-64.
CCQC., (2001). Compost maturity index. The California Compost Quality Council, Nevada, CA, 95959.
Chen J. H., Lin Y. W., (2004). Evaluation of the suitability of three analysis methods for determining organic matter in fertilizers. Journal agricultural chemical food ccience, 42(2): 116-124.
Chen Y., Liu Y., Li Y., Wu Y., Chen Y., Zeng G., Zhang J., Li H., (2017). Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes. Bioresource technology, 243: 347–355.
Chen Y., Xu J., Lv Z., Xie R., Huang L., Jiang J., (2018). Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. Journal of environmental management, 217: 646-653.
Chen, Y. X., Huang, X. D., Han, Z. Y., Huang X., Hu B., Shi D. Z., Wu, W. X., (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78 (9): 1177–1181.
Chlopecka A., (1996). Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland. Science of the total environment, 188(2-3): 253 -262.
Choma A., Nowak K., Komanieck I., Waśko A., Pleszczyńska M., Siwulski M., Wiater A., (2018).Chemical characterization of alkali-soluble polysaccharides isolated from a Boletus edulis (Bull.) fruiting body and their potential for heavy metal biosorption. Food chemistry, 266: 329-334.
CLU-IN., (2017). In-situ flushing: Overview. Contaminated Site Clean-Up Information, U.S. Environmental Protection Agency, Washington, D.C.
Dermont G., Bergeron M., Mercier G., Richer-Laflèche M., (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of hazardous materials, 152(1): 1–31.
Diels L., De S. M., Hooyberghs L., Corbisier P., (1999). Heavy metals bioremediation of soil. Mol. biotechnology, 12(2): 149–158.
Figueroa A., Cameselle C., Gouveia S., Hansen H. K., (2016). Electrokinetic treatment of an agricultural soil contaminated with heavy metals. Journal environmental science and health, 51(9): 691–700.
Gaballah I., Goy D., Allain E., Kilbertus G., Thauront J., (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and materials transactions, 28(1): 13–23.
Garbisu C., Alkorta I., (2003). Basic concepts on heavy metal soil bioremediation. European journal of mineral processing and environmental protection, 3(1): 58–66.
Gerhardt K. E., Huang X. D., Glick B. R., Greenberg B. M., (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant science, 176(1): 20–30.
Guo X., Zhao G., Zhang G., He Q., Wei Z., Zheng W., Qian T., Wu Q., (2018). Effect of chelators of EDTA, GLDA, and citrc acid on bioavailability of reresidual heavy metals in soils and soil properties. 200::776–782.
Haug R. T., (1993). The practical handbook of compost engineering, First edition. Lewis publishers, 691–700.
Hoitink H. A and Keener H. M., (1993). Science and engineering of composting: design, environmental, microbiological and utilization aspects, first Edition. The ohio state university.
Huang P. M., Berthelin J., Bollag J., McGill W. B., (1995). Environmental impact of soil component interaction. Metals, other inorganics and microbial activities, Boca Raton (FL): CRC Press, 376–384.
Huang Z. Y., Li J., Cao Y. L., Cai C., Zhang Z., (2016). Behaviors of exogenous Pb in P-based amended soil investigated with isotopic labeling method coupled with Tessier approach. Geoderma 264: 126–131.
Huang Z. Y., Qin D. P., Zeng X. C., Li J., Cao Y. L., Cai C., (2012). Species distribution and potential bioavailability of exogenous Hg (II) in vegetable growing soil investigated with a modified Tessier scheme coupled with isotopic labeling technique. Geoderma, 189-190: 243-249.
Jabeen E., Janjua N. K., Ahmed S., (2019). Removal of metal ions using metal-flavonoid-DNA adduct protocol author links open overlay panel. Journal of saudi chemical society, 23(1): 118-126.
Kabata P., (1991). Trace metals of sediment of Poland-occurrence and behaviour. Trace substance environmental health, 25: 53-70.
Keeling A. A., Griffiths B. S., Ritz K., Myers M., (1995). Effects of compost stability on plant growth: microbiological parameters and nitrogen availability in media containing mixed garden-waste compost. Bioresource technology, 54(3): 279-284.
Khalid S., Shahid M., Khan N. N., Murtaza B., Bibi I., Dumat C., (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of geochemical exploration, 182: 247-268.
Ko I., Chang Y. Y., Lee C. H., Kim K. W., (2005). Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Journal of hazard materials, 127(1-3): 1–13.
Kreft I., Fabjan N., Yasumoto K., (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Journal food chemical, 98(3): 508-512.
Kumpiene J., Ore S., Renella G., Mench M., Lagerkvist A., Maurice C., (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental pollution, 144(1): 62–69.
Li J. T., Baker A. J., Ye Z. H., Wang H. B., Shu W. S., (2012). Phytoextraction of Cd contaminated soils: current status and future challenges. Critical reviews environmental science and technology, 42(20): 2113–2152.
Liu L., Chen H., Cai P., Liang W., Huang Q., (2009). Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of hazardous materials, 163(2-3): 563–567.
Liu L., Guo X., Wang S., Li L., Zeng Y., Liu G ., (2018). Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts. Ecotoxicology and environment safety, 150: 270-279.
Liu L., Li W., Song W., Guo M., (2018). Remediation techniques for heavy metal contaminated soils: Principles and applicability. Science of the total environment. 633: 206-219.
Liu W., Huo R., Xu J., Liang S., Li J., Zhao T., Wang S., (2017). Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresource technology, 235: 43–49.
Lv B., Xing M., Yang J., Qi W., Lu Y., (2013). Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresource technology, 132: 320-326.
Mahmood Q., Mirza N., Shaheen S., (2015). Phytoremediation using algae and macrophytes:I. Springer international publishing, 2: 265–289.
Mallampati S. R., Mitoma Y., Okuda T., Simion C., Lee B. K., (2015). Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites. Journal environmental radioactivity, 139: 118-124.
Manios T., Stentiford E.I., Millner P., (2003). Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Journal of Chemosphere, 53(5): 487-494.
Marina B. Šćiban., Mile T. Klašnja., Mirjana G. Antov., (2011). Study of the biosorption of different heavy metal ions onto Kraft lignin. Ecological engineering, 37(12): 2092– 2095.
Martíneza A., Vargasb R., Galanob A., (2018). Citric acid: A promising copper scavenger. Computational and theoretical chemistry, 1133: 47–50.
Matheyambath A. C., Padmanabhan P., and Paliyath G., (2016). Citrus Fruits.
Mattigod S. V., Sposito G., Page A. L., (1981). Factors affecting the solubilities of trace metals in soils. American Society of agronomy,Soil science of America Publishing, 210-217.
Meng, J., Lu, W., Zhong, L., Liu, X., Brookes, P. C., Xu, J., Chen, H., (2017). Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere 180: 93–99.
Miaomiao H., Wenhong L., Xinqiang L., Donglei W., Guangming T., 2009. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste management 29 (2): 590–597.
Mladenka P., Zatloukalova L., Filipsky T., Hrdina R., (2010). Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radical biology medicine 49 (6): 963–975.
Mohammed S. A. S., Sanaulla P. F., Kotresha K., Moghal A. A. B., (2017). Sustainable use of contaminated soils amended with nano calcium silicate mixture for nickel encapsulation in an aqueous medium. Matirals todays: proceedings, 4(11): 12271-12277.
Nelson D. W., Sommers L. E., (1982). Total carbon, organic carbon and organic matter. Indiana agricultural experiment station, 7872.
NJDEP., (2014). Technical guidance on the aapping of sites undergoing remediation. NewJersey department of environmental protection, 10-65.
O’Dell R., Silk W., Green P., Claassen V., (2007). Compost amendment of Cu–Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.). Journal of Environmental Pollution, 148(1): 115-124.
Panhwar K.Q., Memon S., Bhangher I.M., (2010). Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)–morin complex. Journal of Molecular Structure, 967(1-3): 47–53.
Peltre C., Gregorich E. G., Bruun S., Jensen L. S., Magid J., (2017). Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil biology and biochemistry, 104: 117-127.
Penniston K. L., Nakada S. Y., Holmes R. P., Assimos D. G., (2008). Quantitative Assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. Journal of endourology. 22 (3): 567-570.
Piar C., Arun K. S., Mohit S., Yogesh B P., (2014). Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics. International biodeterioration and biodegradation, 90: 8-16.
Pulford I. D., Watson C., (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment international, 29(4): 529–540.
Rayu S., Karpouzas D. G., Singh B. K., (2012). Emerging technologies in bioremediation: constraints and opportunities. Biodegradation, 23(6): 917–926.
Reeves R. D., Baker A. J. M., Jaffré T., Erskine P. D., Echevarria G., van der Ent A., (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New phytol, 218(2): 407-411.
Renu M. A., Singh K., Upadhyaya S., Dohare R. K., (2017). Removal of heavy metals from wastewater using modified agricultural adsorbents. Materials today: proceedings, 4(9): 10534–10538.
Reusch, W., (2013).Infrared spectroscopy. The Chemical Sciences and Development.
Sánchez-Monedero M. A., Roig A., Paredes C., and Bernal M. P., (2001). Nitrogen transformation during organic waste composting by the Rutgers System and its effects on pH, EC and maturity of the composting mixtures. Bioresource technology, 78(3): 301-308.
Sarkar B., Naidu R., Rahman M., Megharaj M., Xi Y., (2012). Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of soils and sediments, 12(5): 704–712.
Sela R., Goldrat T., Avnimelech Y., (1998). Determining optimal maturity of compost used for land application. Compost science and utilzation, 1: 83-88.
Shen Y., Zhao L., Meng H., Hou,Y., Zhou H., Wang F., Cheng H., Liu H., (2016). Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting. Waste management and research, 34 (6): 578–583.
Shukla O. P., Rai U. N., Dubey S., (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresource technology, 100 (7): 2198–2203.
Singh S., Parihar P., Singh R., Singh V. P., Prasad S. M., (2016). Heavy metal tolerance in plants:Role of transcriptomics, proteomics, Metabolomics and lonomocs. Frontiers in plant science, 6: 1143.
Stevenson F. J., (1982). Humus chemistry: Genesis, Composition, Reactions. John Wiley & Sons, Inc. publishers.
Suksabye P., Thiravetyan P., (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. Journal of environmental management, 102: 1-8.
Symonowicz M., Kolanek M., (2012). Flavonoids and their properties to form chelate complexes. Biotechnology and food sciences, 76(1): 35-41.
Tampouris S., Papassiopi N., Paspaliaris I., (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of hazardous materials, 84(2-3): 297–319.
Tessier A., Campbell P. G., Blsson M. C., (1979). Sequential extraction procedure for the speciation of particulate trace metals. Journalof Analytical Chemistry, 51(7): 844-851
Tiquia S. M., Tam N. F. Y., (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource technology, 65(1-2): 43-49.
Tsang D. C. W., Zhang W., Lo Irene M. C., (2007). Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere, 68(2): 234-243.
Ure A. M., (1990). Methods of analysis for heavy metals in soils. In: Alloway, B.J. (Ed.), Heavy metals in soils. Blackie, Glasgow, 40–73.
Vaca-Paulín R., Esteller-Alberich M. V., Lugo-de la Fuente J., Zavaleta-Mancera., (2006). Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil. Waste Management, 26(1): 71-81.
Veseý T., Tlustos P., Száková J., (2012) Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. International journal environmental, 14(4): 335-349.
Wild A., (1993). Soils and the environment. In American Journal of Alternative Agriculture.
Wuana R. A., Okieimen F. E., Imborvungu J. A., (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal Environmental Science and Technology 7(3): 485–496.
Xu F., Zhu T. T., Rao Q. Q., Shui S. W., Li W.W., Bo H. H., Yao R. S., (2017). Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. Journal of environmental sciences, 53: 132-140.
Yeung A. T., Gu Y. Y., (2011). A review on techniques to enhance electrochemical remediation of contaminated soils. Journal of hazardous materials, 195: 11–29.
Zein R., Suhaili R., Earnestly F., Indrawati., Munaf E., (2010). Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell. Journal of Hazardous Materials, 181(1-3): 52–56.
Zhai X., Li Zhong W., Huang B., Luo N., Huang M., Zhang Q., Zeng G., (2018). Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the total environment. 635: 92-99.
Zhang X., Zhou X., Liu X., Li X., Whang W., (2016). Development and application of an HPLC-UV procedure to determine multiple flavonoids and phenolics in Acanthopanax leaf extracts. Journal of chromatographic science, 54(4): 574-582.
Zheljazkov V. D., Warman P. R., (2004). Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environmental pollutant 131 (2): 187–195.
Zheng G. D., Ding G., Chen T .B., Luo W., (2007). Stabilization of nickel and chromium in sewage sludge during aerobic composting. Journal of hazardous materials, 142 (1–2): 216–221.
Zhou H., Meng H., Zhao L., Shen Y., Hou Y., Cheng H., Song L., (2018). Effect of biochar and humic acid on the copper, lead, and cadmium stabilization during composting. Bioresourse technology, 258: 279-286.
Zhu N., Dend C., Xiong Y., and Qian H., (2004). Performance characteristics of three aeration systems in the swine manure composting. Bioresource technology, 95(3): 319-326.
Zucconi F., Monaco A. D. E., Forte M., De B. M., (1981). Biological evaluation of compost maturity. Biocycle, 22(4): 27-29.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72909-
dc.description.abstract本研究之土壤採自桃園市大園區竹圍段崁下小段46地號,為目前被列管之控制場址。我國食用作物農地重金屬銅之管制標準為200 mg/kg,但此場址之土壤銅濃度高達2487 mg/kg,超出食用作物農地之管制標準10倍以上,非常嚴重。本研究目的為探討化學檸檬酸及檸檬萃取液淋洗高濃度銅污染土壤之效果與機制,並評估檸檬萃取液淋洗後之土壤添加檸檬製成之堆肥穩定化後其土壤品質是否符合各項地力標準。
本研究製備之材料有檸檬萃取液及其剩餘檸檬作成之堆肥,檸檬萃取液以重量1:1之蒸餾水與檸檬煮滾後,測得檸檬酸含量約9.9 g/L。以化學檸檬酸配製濃度10 g/L做比較,將淋洗液與土壤以重量固液比1:10淋洗土壤後,得其結果為檸檬萃取液淋洗效果較好,造成此結果之因素有(1)檸檬萃取液淋洗過程中其懸浮微粒被土壤攔截,導致土壤孔隙變小,因此停留時間較久與土壤充分反應及(2)檸檬萃取液裡含有其他可螯合重金屬之成分,例如:類黃銅化合物。
本研究最終得證經檸檬萃取液淋洗後之土壤改善了使用化學檸檬酸淋洗造成土壤酸化之問題及經天然檸檸汁淋洗後添加堆肥穩定化之土壤有效降低了銅之植物有效性。結果表明,原土之pH值為4.56酸性土壤,經檸檬萃取液淋洗後pH值不但沒有下降,甚至上升至5.70,且使用天然檸檬之淋洗後添加堆肥穩定化之土壤能使pH值上升至6.29恢復成弱酸性土壤;原土重金屬銅之植物有效性為677 mg/kg,經檸檬萃取液淋洗後添加堆肥穩定化之土壤能使重金屬銅之植物有效性下降至156 mg/kg。
綜合言之,本研究證明了使用檸檬萃取液不僅能有效去除銅及其他植物不需要之重金屬,且效果比化學檸檬酸好還能改善化學檸檬酸整治造成土壤酸化之問題,且添加堆肥後更能使重金屬穩定化,不易釋出被植物吸收。因此得證結合檸檬酸淋洗法與穩定化法是一有效之整治方法。
zh_TW
dc.description.abstractThe soil of this study was taken from the No. 46 subsection of Kanjiao section, Zhuwei Vil., Dayuan Dist., Taoyuan City, which is a currently listed control site. The control standard of copper for edible crop agricultural land in Taiwan is 200 mg/kg, but the copper concentration of the soil in this study is as high as 2487 mg/kg, more than 10 times of the control standard. The purpose of this study is to investigate the effect of synthetic citric acid and the extract from the lemon extract on flushing heavy metal contaminated soil and to evaluate whether the soil quality meets every soil fertility standard after flushing citric acid and adding compost stabilization.
The material prepared in this study is the lemon extract and the compost made from lemon extract of the remaining lemon. After broling the mixture of 1:1 weight ratio distilled water, the citric acid content is about 9.9 g/L. Therefore, chemical citric acid of 10 g / L concentration was used as the control group. After flushing soil with the flushing solution of 1:10 solid-liquid ratio, the result showed that the lemon extract has better flushing effect, and the factors contribute to this result are ( І ) Longer natural juice retention time (Ⅱ) Other elements(like flavonols) which can chelate heavy metal contained in lemon extract.
The result proved that the soil after flushing lemon extract improve the soil acidification by flushing chemical citric acid and whether the added with compost stabilization after flushing lemon extract the soil met every soil fertility standard. The result showed that the pH of the original soil was 4.56 and the soil added with compost after flush with lemon extract could raise the pH to 6.29 and effectively drop copper plant effectiveness; the plant effectiveness of the heavy metal copper in the original soil is 677 mg/kg, and the soil with compost stabilization after flushing lemon extract can decrease the plant effectiveness of heavy metal copper to 156 mg/kg.
In summary, this study proved that using lemon extract not only effectively removed heavy metal with better effect than the chemical citric acid, but also improve the acidification of soil through chemical citric acid addition. Moreover, adding compost can passivate heavy metal not to be easily released. Therefore, the combination of citric acid flushing method and stabilization method is an effective remediation method.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:10:00Z (GMT). No. of bitstreams: 1
ntu-108-R06622011-1.pdf: 5015715 bytes, checksum: 600ef3cefc7a45c7cca2ff1cbe2ed28c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目錄 VI
圖目錄 XI
表目錄 XIII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3研究架構 3
第二章 文獻回顧 5
2.1 農地污染 5
2.1.1 全國農地污染概況 5
2.1.2 桃園農地重金屬污染 7
2.2 重金屬污染 10
2.2.1 農地重金屬污染來源 10
2.2.2 重金屬在土壤中之鍵結型態與特性 10
2.2.3 重金屬在土壤中的傳輸與移動 13
2.2.4重金屬對生物及作物的風險與傷害 17
2.3 重金屬污染土壤復育技術 20
2.3.1重金屬污染土壤復育技術概述 21
2.3.2復育技術比較 24
2.4檸檬 27
2.4.1廢棄檸檬概況 27
2.4.2檸檬 27
2.4.3化學檸檬酸的製造 28
2.4.4檸檬酸去除銅的機制 28
2.5堆肥 29
2.5.1堆肥化之控制條件 29
2.5.2堆肥之穩定化作用 31
2.5.3堆肥之吸附模型 32
2.5.4國內外相關研究 33
第三章 實驗材料與方法 34
3.1實驗設備與藥品 34
3.1.1實驗設備 34
3.1.2化學藥品 35
3.1.3實驗器材 37
3.2 供試土壤之採集與土壤基本性質分析 38
3.2.1土壤採樣方法 38
3.2.2土壤風乾水分 38
3.2.3 pH值 39
3.2.4電導度 39
3.2.5質地 40
3.2.6有機質-重鉻酸鉀氧化法 41
3.2.7重金屬 42
3.3檸檬汁製作與分析 43
3.3.1檸檬汁製作方法 43
3.3.2檸檬萃取液pH測定 44
3.3.3檸檬酸含量測定 44
3.3.4檸檬類黃酮定性分析 45
3.3.5 總黃酮含量(TFC) 46
3.4堆肥製作與分析 47
3.4.1堆肥製作流程 47
3.4.2堆肥品質分析 49
3.4.3堆肥吸附實驗 51
3.5 土柱淋洗實驗 52
3.5.1淋洗方式 52
3.5.2固液比 54
3.5.3檸檬萃取液淋洗與分析 54
3.5.4時間稽延反應 57
3.6穩定化實驗與分析 58
3.6.1穩定化實驗 58
3.6.2重金屬型態序列萃取 58
3.7土壤品質 61
3.7.1植物有效性 61
3.7.2種子試驗 62
第四章 結果與討論 63
4.1 土壤基本性質 63
4.2材料分析與表徵 64
4.2.1檸檬萃取液 64
4.2.2檸檬堆肥 66
4.3檸檬萃取液淋洗(預實驗) 73
4.3.1淋洗方式 73
4.3.2固液比 74
4.4檸檬萃取液與化學檸檬酸淋洗之比較 75
4.4.1淋出液重金屬濃度之變化 75
4.4.2淋出液pH之變化 80
4.4.3 Itrax分析重金屬遷移 81
4.5堆肥吸附機制 85
4.5.1影響堆肥吸附之因素 85
4.5.2堆肥吸附機制 86
4.6檸檬酸淋洗法及結合檸檬酸淋洗法與穩定化法之比較 87
4.6.1淋洗後土壤型態之改變 87
4.6.2淋洗後穩定化土壤型態之改變 90
4.7 土壤品質 93
4.7.1基本性質 93
4.7.2重金屬 96
4.7.3發芽率 99
第五章 結論與建議 105
5.1 結論 105
5.2 建議 107
參考文獻 108
附錄一 品質管制 119
附錄二 實驗數據 120
附錄三 口試委員意見回覆 123
dc.language.isozh-TW
dc.subject堆肥zh_TW
dc.subject淋洗zh_TW
dc.subject土壤品質zh_TW
dc.subject重金屬zh_TW
dc.subject檸檬zh_TW
dc.subject穩定化zh_TW
dc.subjectsoil qualityen
dc.subjectheavy metalsen
dc.subjectflushingen
dc.subjectstabilizationen
dc.subjectlemonen
dc.subjectcomposten
dc.title應用廢棄檸檬於土壤淋洗法與穩定化法進行銅污染農地整治之研究zh_TW
dc.titleRemediation of copper-contaminated farmland using waste lemon integrated with soil flushing and stabilizationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor張尊國(Tsun-Kuo Chang)
dc.contributor.oralexamcommittee石?岡(Po-Kang Shih),江莉琦(Li-Chi Chiang)
dc.subject.keyword重金屬,淋洗,穩定化,檸檬,堆肥,土壤品質,zh_TW
dc.subject.keywordheavy metals,flushing,stabilization,lemon,compost,soil quality,en
dc.relation.page125
dc.identifier.doi10.6342/NTU201901018
dc.rights.note有償授權
dc.date.accepted2019-07-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved