請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72901完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
| dc.contributor.author | Tzu-Han Lin | en |
| dc.contributor.author | 林子涵 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:09:44Z | - |
| dc.date.available | 2024-07-31 | |
| dc.date.copyright | 2019-07-31 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-22 | |
| dc.identifier.citation | References
1. O'Shea, J.J., M. Gadina, and Y. Kanno, Cytokine Signaling: Birth of a Pathway. The Journal of Immunology, 2011. 187(11): p. 5475-5478. 2. Thomson, A.W. and M.T. Lotze, The Cytokine Handbook. 2003: Academic Press. 3. Dinarello, C.A., Historical Review of Cytokines. European journal of immunology, 2007. 37(Suppl 1): p. S34-S45. 4. Diagnostics, C.C., Cytokines and cytokine receptors ELISA Kits. 5. Cannon, J.G., Inflammatory Cytokines in Nonpathological States. Physiology, 2000. 15(6): p. 298-303. 6. Schulte, W., et al., Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View. Mediators of Inflammation, 2013. 2013: p. 16. 7. Pai, M., L.W. Riley, and J.M. Colford, Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review. The Lancet Infectious Diseases, 2004. 4(12): p. 761-776. 8. Gentile, L.F., et al., Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. The journal of trauma and acute care surgery, 2012. 72(6): p. 1491-1501. 9. Guerkov, R.E.M., et al., Detection of low-frequency antigen-specific IL-10-producing CD4+ T cells via ELISPOT in PBMC: cognate vs. nonspecific production of the cytokine. Journal of Immunological Methods, 2003. 279(1): p. 111-121. 10. Leng, S.X., et al., ELISA and Multiplex Technologies for Cytokine Measurement in Inflammation and Aging Research. The Journals of Gerontology: Series A, 2008. 63(8): p. 879-884. 11. Behrens, F. and M. Köhm, Personalisierte Medizin bei Zytokin-gerichteten Therapien. Zeitschrift für Rheumatologie, 2013. 72(1): p. 41-48. 12. Wong, H.R., et al., Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model. PLOS ONE, 2014. 9(1): p. e86242. 13. Inc, M., Sandwich ELISA Technology Overview. 14. Dutta, P., et al., Nanostructured cantilevers as nanomechanical immunosensors for cytokine detection. NanoBiotechnology, 2005. 1(3): p. 237-244. 15. Pui, T.S., et al., Detection of tumor necrosis factor (TNF-α) in cell culture medium with label free electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 2013. 181(Supplement C): p. 494-500. 16. Bahk, Y.K., et al., A New Concept for Efficient Sensitivity Amplification of a QCM A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field. Vol. 32. 2011. 17. Krishnamoorthy, S., et al., An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor. Biosensors and Bioelectronics, 2008. 24(2): p. 313-318. 18. Liu, Y., et al., Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection. Analytical Chemistry, 2010. 82(19): p. 8131-8136. 19. Pui, T.-S., et al., Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. Biosensors and Bioelectronics, 2011. 26(5): p. 2746-2750. 20. Luchansky, M.S. and R.C. Bailey, Silicon Photonic Microring Resonators for Quantitative Cytokine Detection and T-Cell Secretion Analysis. Analytical Chemistry, 2010. 82(5): p. 1975-1981. 21. Chou, T.-H., C.-Y. Chuang, and C.-M. Wu, Quantification of Interleukin-6 in cell culture medium using surface plasmon resonance biosensors. Cytokine, 2010. 51(1): p. 107-111. 22. Huang, T., P.D. Nallathamby, and X.-H.N. Xu, Photostable Single-Molecule Nanoparticle Optical Biosensors for Real-Time Sensing of Single Cytokine Molecules and Their Binding Reactions. Journal of the American Chemical Society, 2008. 130(50): p. 17095-17105. 23. Chen, P., et al., Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano, 2015. 9(4): p. 4173-4181. 24. Haes, A.J., et al., Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. Journal of the American Chemical Society, 2005. 127(7): p. 2264-2271. 25. Das, A., et al., Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Analytical chemistry, 2009. 81(10): p. 3754-3759. 26. Ohta, T., et al., Emission Enhancement of Laser-Induced Breakdown Spectroscopy by Localized Surface Plasmon Resonance for Analyzing Plant Nutrients. Applied Spectroscopy, 2009. 63(5): p. 555-558. 27. Lin, T.-J., K.-T. Huang, and C.-Y. Liu, Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosensors and Bioelectronics, 2006. 22(4): p. 513-518. 28. Lisha, K.P., Anshup, and T. Pradeep, Enhanced visual detection of pesticides using gold nanoparticles. Journal of Environmental Science and Health, Part B, 2009. 44(7): p. 697-705. 29. Oh, B.-R., et al., Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood. ACS Nano, 2014. 8(3): p. 26672676. 30. Endo, T., et al., Multiple Label-Free Detection of Antigen−Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core−Shell Structured Nanoparticle Layer Nanochip. Analytical Chemistry, 2006. 78(18): p. 6465-6475. 31. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507: p. 181. 32. Aćimović, S.S., et al., LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum. Nano Letters, 2014. 14(5): p. 2636-2641. 33. Yavas, O., et al., On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Letters, 2017. 17(7): p. 4421-4426. 34. Li, Y., et al., Miniaturised medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components. Analytica Chimica Acta, 2015. 896: p. 166-176. 35. Huang, S.-H., et al., An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases. Analyst, 2018. 143(6): p. 1367-1377. 36. Chen, P., et al., Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Advanced drug delivery reviews, 2015. 95: p. 90-103. 37. Liu, G., et al., Recent advances in cytokine detection by immunosensing. Biosensors and Bioelectronics, 2016. 79(Supplement C): p. 810-821. 38. Willets, K.A. and R.P.V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007. 58(1): p. 267-297. 39. Mayer, K.M. and J.H. Hafner, Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 2011. 111(6): p. 3828-3857. 40. Unser, S., et al., Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors, 2015. 15(7): p. 15684. 41. Duque, J.S., J.S. Blandón, and H. Riascos, Localized Plasmon resonance in metal nanoparticles using Mie theory. Journal of Physics: Conference Series, 2017. 850(1): p. 012017. 42. Nicoya, The 4 Most Frequently Asked Questions About LSPR Technology. 2016. 43. Sepúlveda, B., et al., LSPR-based nanobiosensors. Nano Today, 2009. 4(3): p. 244-251. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72901 | - |
| dc.description.abstract | 細胞因子的檢測是判斷自體免疫的重要指標,除了解細胞行為的研究價值外,還可在臨床上提供許多診斷資訊,包括傳染病、癌症、自體免疫疾病、過敏原和藥物開發等資訊。然而標準的細胞因子檢測往往需要冗長的反應時間(8-24小時)及繁雜的標記步驟,因此常常會錯過治療的黃金時間 (數小時),且添加標定物進行檢測的方式僅能提供最終的細胞因子濃度,並無法即時檢測快速變化的免疫系統。為解決此問題本論文提出一利用侷限型表面電漿共振 (LSPR) 檢測細胞因子的平台。此平台由三個部分所組成:(1) 雙模式微流道晶片:根據不同需求切換至同步或獨立模式; (2) 自動化微流體系統:自動化控制試劑流速與體積並將試劑輸送至檢測區; (3) 光譜系統:執行免標定與即時生物分子檢測。
本論文首先透過有限元素分析軟體模擬最佳化微流道的設計,接著驗證免疫量測的步驟、光譜系統、LSPR晶片以及自動化微流體系統。最後我們開發的LSPR平台可在4.5小時內完成自動化、免標定、即時和多通道平行化細胞因子檢測,此平台較傳統使用ELISA方式進行的檢測方式量測快2到6倍。我們相信此LSPR平台能克服傳統細胞因子量測的限制,藉由快速且免標定的生物分子檢測,來達成即時診斷與治療。 | zh_TW |
| dc.description.abstract | Cytokine detection allows the immune system to be monitored, providing useful information related to infectious diseases, cancer, autoimmune diseases, allergy transplantation, and drug discovery. However, conventional methods of cytokine measurement usually require multiple labor-intensive labeling procedures as well as long processing time (8-24 hours). Besides, the requirement of labeling process lead to only end-point readout measurements, which makes the monitoring of dynamic cytokine concentration variation impossible. Moreover, the long processing time hinders diagnosis and precludes timely treatments. In this thesis, a localized surface plasmon resonance (LSPR) platform is proposed to address these problems. The LSPR platform consists of three components: (1) a dual-mode microchannel which can switch into the synchronized or independent mode based on different assay steps; (2) an automatic microfluidic system which can control all reagent flow; and (3) a spectroscopy setup which performs label-free and real-time biomolecular detection. Our study first optimized the microchannel design through simulations. Then, the performance of the immunoassay protocol, the spectroscopy setup, the sensor, and automatic microfluidic system are validated in succession. Finally, an automated, label-free, real-time, and multi-parallel cytokine detection is performed by our LSPR platform in under 4.5 hours, which is 2-6 times faster than conventional methods. We believe our LSPR platform have the potential to overcome the limitations of conventional cytokine measurements and perform rapid cytokine detection for punctual diagnosis and timely treatments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:09:44Z (GMT). No. of bitstreams: 1 ntu-108-R05945044-1.pdf: 4887490 bytes, checksum: be0fec256d13dedce5adf686be11ba0e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Cytokines 1 1.1.2 Enzyme-linked Immunosorbent Assay (ELISA) 3 1.2 Literature Review 5 1.2.1 Label-free Biosensor for Cytokine Detection 5 1.2.2 LSPR Sensing for Multiplex Cytokine Detection 8 1.2.3 Microfluidic Flow Control System 10 1.2.4 Summary 13 1.3 Research Motivation 14 1.4 Thesis Structure 15 Chapter 2 Experimental Design 16 2.1 LSPR Theory 16 2.2 LSPR Platform 20 2.2.1 Microfluidic Device 21 2.2.2 Automatic Microfluidic System 24 2.2.3 Spectroscopy Setup 26 Chapter 3 Materials and Methods 29 3.1 Microfluidic Device Fabrication 29 3.1.1 LSPR Sensor 29 3.1.2 Dual-Mode Microchannel Mask Fabrication 30 3.1.3 Microfluidic Device Fabrication 33 3.2 Reagent and Sample Preparation 37 3.3 Immunoassay Protocol 38 3.4 Automatic Microfluidic Platform Control 38 3.5 Motorized Stage Control 44 3.6 Spectroscopy Data Acquisition and Analysis 44 3.7 COMSOL Simulation Parameters 46 Chapter 4 Simulation 47 4.1 Microchannel Design Optimization 47 4.1.1 Inlet Design 47 4.1.2 Branches Design 49 4.2 Dual-Mode Microchannel Velocity Profile 51 Chapter 5 Results and Discussion 52 5.1 LSPR Sensor Characteristics 52 5.1.1 Surface Morphology Analysis 52 5.1.2 Spectroscopy Analysis 54 5.2 Dual-Mode Microchannel 56 5.2.1 Dual-Mode Demonstration 56 5.2.2 Cross-Contamination Evaluation 57 5.3 Spectroscopy Setup Stability 58 5.4 Validation of Assay Protocol and Spectroscopy Setup 59 5.5 Validation of NanoSPR Sensor 61 5.6 Integration of Automatic Microfluidic System into the LSPR Platform 63 5.7 Cytokine Detection 65 Chapter 6 Conclusion 67 Chapter 7 Future Work 68 References 70 | |
| dc.language.iso | en | |
| dc.subject | 細胞因子 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 侷限型表面電漿共振 | zh_TW |
| dc.subject | LSPR | en |
| dc.subject | Microfluidic | en |
| dc.subject | Cytokine | en |
| dc.title | 侷限型表面電漿共振感測平台結合自動化微流道控制系統進行免標定及即時多重生物標記物檢測 | zh_TW |
| dc.title | A Localized Surface Plasmon Resonance (LSPR) Platform Integrated with Automatic Microfluidic Control System for Label-free, Real-time, and Multi-parallel Cytokine Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王倫(Lun Wang),林致廷(Chih-Ting Lin),陳奕帆(Yih-Fan Chen) | |
| dc.subject.keyword | 微流道,侷限型表面電漿共振,細胞因子, | zh_TW |
| dc.subject.keyword | Microfluidic,LSPR,Cytokine, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201901662 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
