請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72898
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁文傑(Man-kit Leung) | |
dc.contributor.author | Yu-Hsin Chen | en |
dc.contributor.author | 陳雨欣 | zh_TW |
dc.date.accessioned | 2021-06-17T07:09:38Z | - |
dc.date.available | 2021-07-26 | |
dc.date.copyright | 2019-07-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-22 | |
dc.identifier.citation | 1. 陳金鑫; 黃孝文, OLED 有機電致發光材料與器件. 2007.
2. Bernanose, A., Electroluminescence of organic compounds. Br. J. Appl. Phys. 1955, 6 (S4), S54-S55. 3. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. J. Chem. Phys. 1963, 38 (8), 2042-2043. 4. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. J. Appl. Phys. 1989, 65 (9), 3610-3616. 5. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541. 6. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S., Organic Electroluminescent Device with a Three-Layer Structure. Jpn. J. Appl. Phys. 1988, 27 (Part 2, No. 4), 713-715. 7. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151-154. 8. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Improved energy transfer in electrophosphorescent devices. Appl. Phys. Lett. 1999, 74 (3), 442-444. 9. Koziar, J. C.; Cowan, D. O., Photochemical heavy-atom effects. Acc. Chem. Res. 2002, 11 (9), 334-341. 10. Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Appl. Phys. Lett. 2003, 82 (15), 2422-2424. 11. Jeon, W. S.; Park, T. J.; Kim, S. Y.; Pode, R.; Jang, J.; Kwon, J. H., Ideal host and guest system in phosphorescent OLEDs. Org. Electron. 2009, 10 (2), 240-246. 12. Suzuki, H.; Hoshino, S., Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes. J. Appl. Phys. 1996, 79 (11), 8816-8822. 13. Dexter, D. L., A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21 (5), 836-850. 14. Főrster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 27 (0), 7-17. 15. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys. Rev. B 2000, 62 (16), 10967-10977. 16. Singh-Rachford, T. N.; Castellano, F. N., Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 2010, 254 (21), 2560-2573. 17. Reineke, S.; Walzer, K.; Leo, K., Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys. Rev. B 2007, 75 (12), 125328. 18. Coehoorn, R.; Bobbert, P. A.; van Eersel, H., Förster-type triplet-polaron quenching in disordered organic semiconductors. Phys. Rev. B 2017, 96 (18). 19. Zhang, J.; Ding, D.; Wei, Y.; Xu, H., Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes. Chem. Sci. 2016, 7 (4), 2870-2882. 20. Kim, J. S.; Granström, M.; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F., Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. J. Appl. Phys. 1998, 84 (12), 6859-6870. 21. Mason, M. G.; Hung, L. S.; Tang, C. W.; Lee, S. T.; Wong, K. W.; Wang, M., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. J. Appl. Phys. 1999, 86 (3), 1688-1692. 22. Ishida, T.; Kobayashi, H.; Nakato, Y., Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by x‐ray photoelectron spectroscopy and work‐function measurements. J. Appl. Phys. 1993, 73 (9), 4344-4350. 23. Løvvik, O. M.; Diplas, S.; Romanyuk, A.; Ulyashin, A., Initial stages of ITO/Si interface formation: In situ x-ray photoelectron spectroscopy measurements upon magnetron sputtering and atomistic modelling using density functional theory. J. Appl. Phys. 2014, 115 (8), 083705. 24. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule,4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material. Appl. Phys. Lett. 1994, 65 (7), 807-809. 25. Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J., Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci.: Mater. Electron. 2015, 26 (7), 4438-4462. 26. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angew. Chem., Int. Ed. 1998, 37 (4), 402-428. 27. Van Slyke, S. A.; Tang, C. W., US Patent 5 1991, 061, 569. 28. Shirota, Y., Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 2000, 10 (1), 1-25. 29. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Trans. Electron Devices 1997, 44 (8), 1245-1248. 30. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Appl. Phys. Lett. 1989, 55 (15), 1489-1491. 31. Shi, J.; Tang, C. W.; Chen, C. H., US Patent 5 1997, 646, 948. 32. Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K.; Nagai, K., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Jpn. J. Appl. Phys. 1993, 32 (Part 2, No. 7A), 917-920. 33. Lee, J.-H.; Huang, C.-L.; Hsiao, C.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Blue phosphorescent organic light-emitting device with double emitting layer. Appl. Phys. Lett. 2009, 94 (22), 223301. 34. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl. Phys. Lett. 2001, 79 (13), 2082-2084. 35. Kim, S.; Bae, H. J.; Park, S.; Kim, W.; Kim, J.; Kim, J. S.; Jung, Y.; Sul, S.; Ihn, S. G.; Noh, C.; Kim, S.; You, Y., Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers. Nat. Commun. 2018, 9 (1), 1211. 36. Jeon, S. K.; Lee, J. Y., Four times lifetime improvement of blue phosphorescent organic light-emitting diodes by managing recombination zone. Org. Electron. 2015, 27, 202-206. 37. Seo, J.-A.; Jeon, S. K.; Gong, M. S.; Lee, J. Y.; Noh, C. H.; Kim, S. H., Long lifetime blue phosphorescent organic light-emitting diodes with an exciton blocking layer. J. Mater. Chem. C 2015, 3 (18), 4640-4645. 38. Zhang, Y.; Lee, J.; Forrest, S. R., Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 2014, 5, 5008. 39. Lee, J.-H.; Tsai, H.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Phosphorescent organic light-emitting device with an ambipolar oxadiazole host. Appl. Phys. Lett. 2007, 90 (24), 243501. 40. Leung, M.-k.; Yang, C.-C.; Lee, J.-H.; Tsai, H.-H.; Lin, C.-F.; Huang, C.-Y.; Su, Y. O.; Chiu, C.-F., The Unusual Electrochemical and Photophysical Behavior of 2,2‘-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Org. Lett. 2007, 9 (2), 235-238. 41. Kim, M.; Lee, J. Y., Engineering the Substitution Position of Diphenylphosphine Oxide at Carbazole for Thermal Stability and High External Quantum Efficiency Above 30% in Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Funct. Mater. 2014, 24 (26), 4164-4169. 42. Liu, K.; Li, X.-L.; Liu, M.; Chen, D.; Cai, X.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; Su, S.-J., 9,9-Diphenyl-thioxanthene derivatives as host materials for highly efficient blue phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2015, 3 (38), 9999-10006. 43. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234. 44. Li, S. W.; Yu, C. H.; Ko, C. L.; Chatterjee, T.; Hung, W. Y.; Wong, K. T., Cyanopyrimidine-Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs. ACS Appl. Mater. Interfaces 2018, 10 (15), 12930-12936. 45. Dou, Q.; Jiang, L.; Kai, D.; Owh, C.; Loh, X. J., Bioimaging and biodetection assisted with TTA-UC materials. Drug Discov. Today 2017, 22 (9), 1400-1411. 46. Tang, X.; Bai, Q.; Shan, T.; Li, J.; Gao, Y.; Liu, F.; Liu, H.; Peng, Q.; Yang, B.; Li, F.; Lu, P., Efficient Nondoped Blue Fluorescent Organic Light-Emitting Diodes (OLEDs) with a High External Quantum Efficiency of 9.4% @ 1000 cd m−2 Based on Phenanthroimidazole−Anthracene Derivative. Adv. Funct. Mater. 2018, 28 (11). 47. Kim, Y.-H.; Wai Cheah, K.; Young Kim, W., High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants. Appl. Phys. Lett. 2013, 103 (5). 48. Yook, K. S.; Lee, J. Y., Bipolar Host Materials for Organic Light-Emitting Diodes. Chem. Rec. 2016, 16 (1), 159-72. 49. Tao, Y.; Yang, C.; Qin, J., Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40 (5), 2943-70. 50. Huang, H.; Yang, X.; Pan, B.; Wang, L.; Chen, J.; Ma, D.; Yang, C., Benzimidazole–carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications. J. Mater. Chem. 2012, 22 (26). 51. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D., A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2014, 2 (14), 2466-2469. 52. Huang, J. J.; Hung, Y. H.; Ting, P. L.; Tsai, Y. N.; Gao, H. J.; Chiu, T. L.; Lee, J. H.; Chen, C. L.; Chou, P. T.; Leung, M. K., Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes. Org. Lett. 2016, 18 (4), 672-5. 53. Chang, S. Y.; Lin, G. T.; Cheng, Y. C.; Huang, J. J.; Chang, C. L.; Lin, C. F.; Lee, J. H.; Chiu, T. L.; Leung, M. K., Construction of Highly Efficient Carbazol-9-yl-Substituted Benzimidazole Bipolar Hosts for Blue Phosphorescent Light-Emitting Diodes: Isomer and Device Performance Relationships. ACS Appl. Mater. Interfaces 2018, 10 (49), 42723-42732. 54. 鄭雨潔, 三咔唑與苯并咪唑雙極材料之合成、性質探討以及在磷光有機發光二極體之應用. 國立台灣大學. 2018. 55. Yu, L.-F.; Ge, C.-W.; Wang, J.-T.; Xiang, X.; Li, W.-S., Modification of a donor-acceptor photovoltaic polymer by integration of optoelectronic moieties into its side chains. Polymer 2015, 59, 57-66. 56. Kim, Y.; Kim, J.; Tae, J.; Roth, B. L.; Rhim, H.; Keum, G.; Nam, G.; Choo, H., Discovery of aryl-biphenyl-2-ylmethylpiperazines as novel scaffolds for 5-HT7 ligands and role of the aromatic substituents in binding to the target receptor. Bioorg. Med. Chem. 2013, 21 (9), 2568-2576. 57. Chen, C.; Shang, G.; Zhou, J.; Yu, Y.; Li, B.; Peng, J., Modular synthesis of benzimidazole-fused phenanthridines from 2-arylbenzimidazoles and o-dibromoarenes by a palladium-catalyzed cascade process. Org. Lett. 2014, 16 (7), 1872-5. 58. Liu, J.; Zhang, N.; Yue, Y.; Liu, G.; Liu, R.; Zhang, Y.; Zhuo, K., One-Pot Synthesis of Benzimidazo[1,2-f]phenanthridines by Cascade Palladium-CatalyzedN-Arylation and Intramolecular C-H Coupling. Eur. J. Org. Chem. 2013, 2013 (34), 7683-7687. 59. Yan, L.; Zhao, D.; Lan, J.; Cheng, Y.; Guo, Q.; Li, X.; Wu, N.; You, J., Palladium-catalyzed tandem N-H/C-H arylation: regioselective synthesis of N-heterocycle-fused phenanthridines as versatile blue-emitting luminophores. Org. Biomol. Chem. 2013, 11 (45), 7966-77. 60. Zhao, G.; Chen, C.; Yue, Y.; Yu, Y.; Peng, J., Palladium(II)-catalyzed sequential C-H arylation/aerobic oxidative C-H amination: one-pot synthesis of benzimidazole-fused phenanthridines from 2-arylbenzimidazoles and aryl halides. J. Org. Chem. 2015, 80 (5), 2827-34. 61. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R., Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin Trans. 2 1987, (12), S1-S19. 62. Koop, T.; Bookhold, J.; Shiraiwa, M.; Poschl, U., Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13 (43), 19238-55. 63. Sasaki, S.; Drummen, G. P. C.; Konishi, G.-i., Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C 2016, 4 (14), 2731-2743. 64. Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U., Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535. 65. Rausch, A. F.; Thompson, M. E.; Yersin, H., Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy)2(pic) (FIrpic): Investigations by High-Resolution Optical Spectroscopy. Inorg. Chem. 2009, 48 (5), 1928-1937. 66. He, J.; Liu, H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. J. Phys. Chem. C 2009, 113 (16), 6761-6767. 67. Hofbeck, T.; Yersin, H., The triplet state of fac-Ir(ppy)3. Inorg. Chem. 2010, 49 (20), 9290-9299. 68. Yan, L.; Zhao, D.; Lan, J.; Cheng, Y.; Guo, Q.; Li, X.; Wu, N.; You, J., Palladium-catalyzed tandem N–H/C–H arylation: regioselective synthesis of N-heterocycle-fused phenanthridines as versatile blue-emitting luminophores. Org. Biomol. Chem. 2013, 11 (45), 7966-7977. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72898 | - |
dc.description.abstract | 本篇論文利用咔唑 (Carbazole) 及三咔唑 (Tricarbazole,3cbz) 修飾在苯并咪唑環化之菲啶化合物 (Benzimidazo<1,2-f>phenanthridine,CBIZ) 的10號碳、8號碳和6號碳上,合成了五個雙偶極 (Bipolar) 化合物。根據過往之研究報導,咔唑及三咔唑具有高三重態能階及良好的電洞傳輸特性,而苯并咪唑 (Benzimidazole) 具備良好的電子傳輸特性。本研究藉由一個碳-碳鍵的形成,將苯并咪唑改良為苯并咪唑環化之菲啶化合物,期許能在不增加分子量的條件下,增加結構的剛性以提升分子的熱穩定性。此外,亦期望此共平面結構能提升材料的電子傳輸效率,使整體分子的電洞傳輸效率和電子傳輸效率更平衡,進而提升有機發光二極體元件的表現。
在分子設計上,咔唑及三咔唑以碳-氮鍵且正交鍵結 (Orthogonally linkage) 之方式修飾在苯并咪唑環化之菲啶化合物,以維持分子的高三重態能階。本研究針對化合物之熱性質、光物理性質和電化學性質進行分析,結果顯示此五個化合物均具有高玻璃轉換溫度和出色的三重態能階。此外,亦透過X-Ray單晶繞射進行晶體結構排列的研究與探討。 以本研究所合成之化合物應用於磷光有機發光二極體元件的製作。其中,本研究所合成之化合物4-cbzCBIZ與化合物ID5皆摻混FIrpic,形成一有效之雙發光層元件。元件測量結果顯示,電荷密度20 mA/cm2的驅動電壓為7.84 V、最大亮度為15540 cd/m2、最大電流效率為20.02 cd/A、最大外部量子產率為8.83 %,以及生命期達到221分鐘。 | zh_TW |
dc.description.abstract | In this thesis, five bipolar compounds based on carbazole or tricarbazole substituted benzimidazo<1,2-f>phenanthridine have been synthesized which the carbazole as well as tricarbazole are C10, C8 and C6-linked to the benzimidazo<1,2-f>phenanthridine unit. According to previous reports, carbazole and tricarbazole are renowned hole-transporting moieties, and benzimidazole plays an important role in electron-transporting materials. However, looking forward to enhancing electron mobility and securing higher thermal properties, we transform benzimidazole unit to benzimidazo<1,2-f>phenanthridine unit by connecting one bond.
In order to synthesize molecules with high triplet state, units are expected to be orthogonally linked with each other to twist the conformation. In addition, the thermal properties, photophysical properties, and electrochemical properties have been carefully evaluated, and the results show that all of these compounds possess not only a high glass transition temperature but a high triplet energy state as well. The crystal arrangement of these compounds has been studied through X-Ray single crystal diffraction. One of our novel host material 4-cbzCBIZ along with compound ID5 forms an effective FIrpic-doped double-emitting layer. The corresponding blue PhOLED device shows excellent performance with the turn-on voltage of 7.84 V at 20 mA/cm2, a maximum luminance of 15540 cd/m2, a maximum current efficiency of 20.02 cd/A, a maximum external quantum efficiency of 8.83%, and a maximum lifetime of 221 minutes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:09:38Z (GMT). No. of bitstreams: 1 ntu-108-R06223110-1.pdf: 9856423 bytes, checksum: 62f9ebdb92be1f68e4aa3379dc08b606 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄 I
摘要 III Abstract IV 化合物結構式與編號 V 圖目錄 VIII 表目錄 XII 流程目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 有機發光二極體起源歷史 2 1.3 有機發光二極體工作原理 3 1.3.1 發光機制 3 1.3.2 元件架構與工作機制 5 1.3.3主客摻混磷光發光系統 7 1.4 有機發光二極體各層材料 11 1.4.1陽極材料 11 1.4.2陰極材料 11 1.4.3電洞注入材料 11 1.4.4電洞傳導材料 12 1.4.5電子注入材料 13 1.4.6電子傳導材料 13 1.4.7發光材料 14 1.5 近期有機發光二極體發展 16 1.5.1 藍色磷光主客發光材料系統 16 1.5.2 熱活化型延遲螢光及三重態-三重態湮滅光子上轉換發光系統 18 第二章 結果與討論 21 2.1分子設計 21 2.2合成方法 27 2.3 X-Ray 晶體結構分析 35 2.4熱性質分析 43 2.5光物理性質分析 48 2.6電化學性質分析 59 2.7能量轉移 64 2.8 有機電激發光元件表現 68 2.8.1 藍光有機電激發光元件 68 2.8.2 綠光有機電激發光元件 85 第三章 結論 90 第四章 實驗內容 91 4.1實驗儀器與試劑 91 4.2合成步驟 93 第五章 參考文獻 116 第六章 附錄 124 附錄一 化合物TGA圖譜 124 附錄二 化合物X-ray晶體參數表、鍵長與鍵角數據 125 附錄三 化合物氫核磁共振光譜與碳核磁共振光譜 176 | |
dc.language.iso | zh-TW | |
dc.title | 咔唑或三咔唑與苯并咪唑環化之菲啶化合物雙極材料之合成、性質探討以及在磷光有機發光二極體之應用 | zh_TW |
dc.title | Synthesis and Characterization of Carbazole or Tricarbazole Substituted Benzimidazo<1,2-f>phenanthridine Bipolar Materials and their Aplications in PhOLED | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林建村(Jian-Cun Lin),邱天隆(Tien-Lung Chiu) | |
dc.subject.keyword | ?唑,三?唑,苯并咪唑環化之菲啶化合物,雙偶極,磷光有機發光二極體, | zh_TW |
dc.subject.keyword | carbazole,tricarbazole,Benzimidazo<1,2-f>phenanthridine,bipolar,PhOLEDs, | en |
dc.relation.page | 213 | |
dc.identifier.doi | 10.6342/NTU201901649 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-23 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 9.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。