Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72886
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃永芬
dc.contributor.authorChien-Cheng Hungen
dc.contributor.author洪健誠zh_TW
dc.date.accessioned2021-06-17T07:09:14Z-
dc.date.available2024-07-26
dc.date.copyright2019-07-26
dc.date.issued2019
dc.date.submitted2019-07-23
dc.identifier.citation呂禮佳 (2013) 推動種植本土芻料以替代進口乾草之成效. 農政與農情 257:44-47
施惠敏, 呂秀英 (2016) 活化休耕地之重要農產品產業發展策略之研究. 畜產研究 50:70-77
Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J 16:1452-1463
Bjørnstad Å, He X, Tekle S, Klos K, Huang Y-F, Tinker NA, Dong Y, Skinnes H, Miedaner T (2017) Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.). Plant Breeding 136:620-636
Bockus WW, Shroyer JP (1996) Effect of seed size on seedling vigor and forage production of winter wheat. Canadian Journal of Plant Science 76:101-105
Brocklehurst, Dearman, Jane (2008) Interactions between seed priming treatments and nine seed lots of carrot, celery and onion. I. Laboratory germination
Butt MS, Tahir-Nadeem M, Khan MK, Shabir R (2008) Oat: unique among the cereals. Eur J Nutr 47:68-79
Cairns JE, Namuco OS, R.Torres, Simborio FA, Courtois B, Aquino GA, Johnson DE (2009) Investigating early vigour in upland rice (Oryza sativa L.): Part II. Identification of QTLs controlling early vigour under greenhouse and field conditions. Field Crops Research 113:207-217
Campbell MT, Du Q, Liu K, Brien CJ, Berger B, Zhang C, Walia H (2017) A comprehensive image-based phenomic analysis reveals the complex genetic architecture of shoot growth dynamics in rice (Oryza sativa). The Plant Genome 10
Chaffin AS, Huang YF, Smith S, Bekele WA, Babiker E, Gnanesh BN, Foresman BJ, Blanchard SG, Jay JJ, Reid RW, Wight CP, Chao S, Oliver R, Islamovic E, Kolb FL, McCartney C, Mitchell Fetch JW, Beattie AD, Bjornstad A, Bonman JM, Langdon T, Howarth CJ, Brouwer CR, Jellen EN, Klos KE, Poland JA, Hsieh TF, Brown R, Jackson E, Schlueter JA, Tinker NA (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome 9
Coblentz WK, Nellis SE, Hoffman PC, Hall MB, Weimer PJ, Esser NM, Bertram MG (2013) Unique interrelationships between fiber composition, water-soluble carbohydrates, and in vitro gas production for fall-grown oat forages. J Dairy Sci 96:7195-7209
Crestani M, Gonzalez da Silva JA, Tessmann EW, Mezzalira I, Costa de Oliveira A, de Carvalho FIF (2011) A proposal for aluminum tolerance selection in white oat under hydroponic conditions. Journal of Crop Science and Biotechnology 14:71-77
Currah IE, Salter PJ (1973) Some combined effects of size grading and 'Hardening' seed on the establishment, growth, and yield of four varieties of carrots. Annals of Botany 37:709-719
Elliott RH, Franke C, Rakow GFW (2008) Effects of seed size and seed weight on seedling establishment, vigour and tolerance of Argentine canola (Brassica napus) to flea beetles, Phyllotreta spp. Canadian Journal of Plant Science 88:207-217
Ellis R (1992) Seed and seedling vigour in relation to crop growth and yield. Plant growth regulation 11:249-255
Esvelt Klos K, Huang YF, Bekele WA, Obert DE, Babiker E, Beattie AD, Bjornstad A, Bonman JM, Carson ML, Chao S, Gnanesh BN, Griffiths I, Harrison SA, Howarth CJ, Hu G, Ibrahim A, Islamovic E, Jackson EW, Jannink JL, Kolb FL, McMullen MS, Mitchell Fetch J, Murphy JP, Ohm HW, Rines HW, Rossnagel BG, Schlueter JA, Sorrells ME, Wight CP, Yan W, Tinker NA (2016) Population genomics related to adaptation in elite oat germplasm. Plant Genome 9
Federer W (1956) Augmented (or hoonuiaku) designs Hawaiian Planters Record. Honolulu
Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9:e102448
Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R (2001) Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? Journal of Experimental Botany 52:1827-1833
Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim Ie S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521-4539
López-Castañeda C, Richards RA, Farquhar GD, Williamson RE (1996) Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Science 36:1257-1266
Lafond GP, Baker RJ (1986) Effects of genotype and seed size on speed of emergence and seedling vigor in nine spring wheat cultivars1. Crop Science 26:341-346
Lee C, Teng Q, Zhong R, Yuan Y, Ye Z-H (2014) Functional roles of rice glycosyltransferase family GT43 in xylan biosynthesis. Plant signaling & behavior 9:e27809
Li X-M, Chen X-M, Xiao Y-G, Xia X-C, Wang D-S, He Z-H, Wang H-J (2014) Identification of QTLs for seedling vigor in winter wheat. Euphytica 198:199-209
Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theoretical and Applied Genetics 110:1244-1252
Liu L, Lai Y, Cheng J, Wang L, Du W, Wang Z, Zhang H (2014) Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice. PLOS ONE 9:e115732
Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767
Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JAD, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell 20:2603-2618
Lu X-L, Niu A-L, Cai H-Y, Zhao Y, Liu J-W, Zhu Y-G, Zhang Z-H (2007) Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice. Plant Science 172:212-220
Mut Z, Akay H (2010) Effect of seed size and drought stress on germination and seedling growth of Avena sativa L
O'Donoughue LS, Souza E, Tanksley SD, Sorrells ME (1994) Relationships among north American oat cultivars based on restriction fragment length polymorphisms. Crop Science 34:1251-1258
Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, Shackelford I, Korol AB, Wight CP, Gardner KM, Hattori J, Beattie AD, Bjørnstad Å, Bonman JM, Jannink J-L, Sorrells ME, Brown-Guedira GL, Mitchell Fetch JW, Harrison SA, Howarth CJ, Ibrahim A, Kolb FL, McMullen MS, Murphy JP, Ohm HW, Rossnagel BG, Yan W, Miclaus KJ, Hiller J, Maughan PJ, Redman Hulse RR, Anderson JM, Islamovic E, Jackson EW (2013) SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PloS one 8:e58068-e58068
Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution 3:245-256
Perry DA (1970) The relation of seed vigour to field establishment of garden pea cultivars. The Journal of Agricultural Science 74:343-348
R Core Team (2018) R: A language and environment for statistical computing: a graduate course in probability. R Foundation for statistical computing, Vienna, Austria.
Roberts EH, Abdalla FH (1969) The effect of seed storage conditions on the growth and yield of barley, broad beans, and peas. Annals of Botany 33:169-184
Shi Y, Gao L, Wu Z, Zhang X, Wang M, Zhang C, Zhang F, Zhou Y, Li Z (2017) Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC plant biology 17:92-92
Shimizu A, Kato K, Komatsu A, Motomura K, Ikehashi H (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987-996
Sunstrum FG, Bekele WA, Wight CP, Yan W, Chen Y, Tinker NA, Buerstmayr H (2018) A genetic linkage map in southern‐by‐spring oat identifies multiple quantitative trait loci for adaptation and rust resistance. Plant Breeding
Suttie JM, Reynolds SG (2004) Fodder oats: a world overview. Food & Agriculture Org.
Tinker NA, Bekele WA, Hattori J (2016) Haplotag: software for haplotype-based genotyping-by-sequencing analysis. G3 (Bethesda) 6:857-863
Tinker NA, Chao S, Lazo GR, Oliver RE, Huang Y-F, Poland JA, Jellen EN, Maughan PJ, Kilian A, Jackson EW (2014) A SNP genotyping array for hexaploid oat. The Plant Genome 7
Tumino G, Voorrips RE, Rizza F, Badeck FW, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJ (2016) Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theor Appl Genet 129:1711-1724
Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z (2014) A SUPER powerful method for genome wide association study. PLoS One 9:e107684
Warzecha T, Zieliński A, Skrzypek E, Wójtowicz T, Moś M (2011) Effect of mechanical damage on vigor, physiological parameters, and susceptibility of oat (Avena sativa) to Fusarium culmorum infection. Phytoparasitica 40:29-36
Winkler LR, Michael Bonman J, Chao S, Admassu Yimer B, Bockelman H, Esvelt Klos K (2016) Population structure and genotype-phenotype associations in a collection of oat landraces and historic cultivars. Front Plant Sci 7:1077
Wu J, Feng F, Lian X, Teng X, Wei H, Yu H, Xie W, Yan M, Fan P, Li Y, Ma X, Liu H, Yu S, Wang G, Zhou F, Luo L, Mei H (2015) Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol 15:218
You J, Li Q, Yue B, Xue W-Y, Luo L-J, Xiong L-Z (2006) Identification of quantitative trait loci for ABA sensitivity at seed germination and seedling stages in rice. Acta Genetica Sinica 33:532-541
Zhao LD, Atlin G, Bastiaans L, Spiertz H (2006) Comparing rice germplasm groups for growth, grain yield and weed‐suppressive ability under aerobic soil conditions
Zhu C, Gore M, Buckler E, Yu J (2008) Status and prospects of association mapping in plants
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72886-
dc.description.abstract燕麥是全球第七大穀類作物,同時也是熱帶及亞熱帶地區的重要芻料作物。耕作方式屬粗放的芻料作物,為抵抗早期雜草,幼苗生長勢是重要的農藝性狀,同時也影響後期的芻料產量,但在過去並無對燕麥相關性狀遺傳因子的研究,因此本研究以來自全球重點燕麥育種計畫的650個優良燕麥品系 (CORE, Collaborative Oat Research Enterprise) 及來自美國農業部國家小穀物種源資源庫的378個燕麥地方種 (NSGC, USDA National Small Grains Collection),共兩個族群1,028個種原作為研究材料,利用全基因體關聯性分析探討燕麥幼苗生長勢的遺傳結構。除了傳統的各時間點橫斷研究之外,同時也使用數學模型估計燕麥幼苗的生長動態。我們在CORE及NSGC中各定位66及39個數量性狀基因座 (Quantitative trait loci, QTL) ,利用各時間點的橫斷研究法所發現的QTL多與第一葉齡時期的時間點 (移植後第6-12天) 有關聯,所定位之QTL集中在數個同源連鎖群;而利用模型估計的方法所定位的QTL也是集中在數個同源連鎖群,但遺傳位置並不相同。不過,其中比較特別的是有兩組重疊的同源連鎖群:Mrg09、Mrg20、Mrg21及Mrg05、Mrg06、Mrg24,不但與株高的性狀有關,也同時發現與幼苗重量、模型估計的參數有關。此外,這些同源連鎖群中的遺傳區域,在前人的燕麥研究亦定位到與開花期、開花後株高,或是與植物防禦相關的QTL;我們將這些QTL相關序列與不同物種的序列比較後,發現預測之蛋白質功能與幼苗生長勢相關,因此我們認為未來若對這兩組同源連鎖群有進一步的探討,可以使我們對燕麥幼苗生長勢有更多的認識。zh_TW
dc.description.abstractOats (Avena sativa L.) rank the seventh cereal crop in the world in the term of production and cropping area, and are also an important forage crop for temperate, subtropical to tropical regions. Under an extensive management, strong seedling vigour is an important agronomic trait to assure a better weed competition at the early stage, and consequently a higher yield of biomass. However, there were few oat study that research oat seedling vigour. In this study, we conducted genome-wide association analysis based on 1,028 diverse oat accessions, including 650 cultivated elite oat accessions from Collaborative Oat Research Enterprise (CORE) and 378 oat landraces from USDA National Small Grains Collection (NSGC) in order to explore the genetic architecture of oat seedling vigour. In addition to traditional cross-sectional studies which assessed the phenotypes of interest at discrete time points, functional modeling was also used to estimate parameters related to the growth dynamics of oat seedlings. We detected 66 and 39 quantitative trait loci (QTL) in CORE and NSGC, respectively. Most of the QTL detected by cross-sectional study were associated with the time points at the first leaf stage (6-12 days after transplantation). QTL of similar traits were located on the homeologous linkage groups. QTL detected on growth parameters obtained using model fitting were also located on several homeologous linkage groups, but the genetic positon were different from those identified using cross-sectional traits. Two sets of homeologs of interest were identified: Mrg09, Mrg20, Mrg21 and Mrg05, Mrg06, Mrg24, which were not only associated to plant height, but also to seedling weight and growth parameters. In addition, those homeologs have been mapped previously for heading date, plant height after heading, or different plant defense responses. Comparing sequences of trait-associated marker with sequences from other cereal species showed that some markers were associated with seedling vigour related genes. Therefore, we believe that these two sets of homeologs merit further work to better understand seedling vigour in oats.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:09:14Z (GMT). No. of bitstreams: 1
ntu-108-R06621119-1.pdf: 4567562 bytes, checksum: d0ba5b4c05a515d8d87f21188c45f06a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 i
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
1. 前言 10
1.1. 燕麥與臺灣芻料現況 10
1.2. 幼苗生長勢 11
1.3. 生長模型 11
1.4. 幼苗生長勢之遺傳結構 12
1.5. 研究目的 13
2. 材料與方法 14
2.1. 植物材料 14
2.2. 基因型資料 14
2.3. 外表型資料收集 15
2.3.1. 水耕系統 15
2.3.2. 試驗設計 16
2.3.3. 種植及測量方法 16
2.4. 資料處理 16
2.4.1. 基於批次效應的校正平均 17
2.4.2. 基於時間序列的模型配適 18
2.5 族群結構分析及全基因體關聯性分析方法 18
2.6 Basic Local Alignment Search Tool (BLAST) 20
3. 結果 21
3.1. 性狀分布 21
3.2. 族群結構 23
3.3. 性狀的遺傳結構 24
4. 討論 28
5. 結論 33
參考文獻 66
附錄 70
dc.language.isozh-TW
dc.subject燕麥 (Arena sativa L.)zh_TW
dc.subject幼苗生長勢zh_TW
dc.subject生長趨勢zh_TW
dc.subject全基因體關聯性分析zh_TW
dc.subject橫斷研究法zh_TW
dc.subjectOats (Arena sativa L.)en
dc.subjectSeedling vigouren
dc.subjectGrowth dynamicen
dc.subjectGenome-wide association analysis (GWAS)en
dc.subjectCross-sectional studyen
dc.title利用全基因體關聯性分析解析燕麥幼苗生長勢的遺傳結構zh_TW
dc.titleDissecting the Genetic Architecture of Seedling Vigour in Oats (Avena sativa L.) Using Genome-Wide Association Analysisen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳嘉昇,董致韡,林維怡
dc.subject.keyword燕麥 (Arena sativa L.),幼苗生長勢,生長趨勢,全基因體關聯性分析,橫斷研究法,zh_TW
dc.subject.keywordOats (Arena sativa L.),Seedling vigour,Growth dynamic,Genome-wide association analysis (GWAS),Cross-sectional study,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201901598
dc.rights.note有償授權
dc.date.accepted2019-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved