請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72880
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹恆偉(Hen-Wai Tsao) | |
dc.contributor.author | Cheng-Hsuan Wu | en |
dc.contributor.author | 吳承軒 | zh_TW |
dc.date.accessioned | 2021-06-17T07:09:02Z | - |
dc.date.available | 2029-07-19 | |
dc.date.copyright | 2019-10-09 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-23 | |
dc.identifier.citation | 李凡, 謝文斌, 阻塞型睡眠時呼吸暫停的治療-連續性呼吸道正壓以外的治療方法, 當代醫學29卷3期, 2002
馬素華, 阻塞型睡眠呼吸中止症候群簡介, 臺東大學人文學報第1卷第 2 期, 2002 張高耀、周慧玲、林俊修、馮南雄, 阻塞型睡眠呼吸中止症候群 , 臺灣醫界38 卷 5 期, 1996 陳濘宏, 阻塞型睡眠呼吸中止症, 台灣醫學, 第9卷, 2002 曾若琦、謝文斌, 睡眠呼吸暫停, 當代醫學28卷8期, 2002 Halàsz P, Terzano M, Parrino L, and Bodizs R, “The nature of arousals in sleep”, Journal of Sleep Research, vol. 13, pp. 1-23, 2004. 吳紹豪、蕭光明, 簡介阻塞型睡眠呼吸中止症, 台北市醫師公會會刊, 第56卷第10期, 2012 Fry DiPhillipo, Curran K., ” Full polysomnography in the home. “ Sleep. 21: 635- 642, 1998 Martha E. Billings. (August 18, 2014), Interpreting Sleep Study Reports for the Sleep Education for Pulmonary Fellows and Practitioners, SRN ATS Committee [Online].Available:https://www.thoracic.org/professionals/clinical-resources/sleep/sleep-modules/resources/interpreting%20Sleep%20Studies%20primer.pptx American Academy of Sleep Medicine,(1999), Sleep-related Breathing Disorders in Adults: Recommendations for Syndrome Definition and Measurement Techniques in Clinical Research. Sleep. 22: p 667- 689. Bonnet M.H, Doghramji K, Roehrs T, Stepanski E.J, Sheldon S.H, Walters S.A, et al., 'The Scoring of Arousal in Sleep: Reliability, Validity, and Alternatives,' Journal of Clinical Sleep Medicine, vol. 3, pp. 133-145, 2007. S. Sanei, J. A. Chambers, EEG SIGNAL PROCEESSING, Centre of Digital Signal Processing Cardiff University, UK, 2007 W. J. Ray, The electrocortical system. In J. T. Cacioppo and L. G. Tassinary Eds., Principles of Psychophysiology : Physical, social, and inferential elements, p.385-412, New York: Cambridge University Press, 1990 林宜靜,腦波檢查,高醫醫訊第36卷第7期,2016 Jasjeet Kaur, Amanpreet Kaur, “A review on Analysis of EEG Signal”, International Conference on Advances in Computer Engineering and Applications, 2015 Bo Hjorth, “Eeg analysis based on time domain properties”, Electroen- cephalography and clinical neurophysiology, 29(3):306-310, 1970 Lawrence T. DeCarlo, “ On the Meaning and Use of Kurtosis”, Psychological Methods, Vol. 2, No. 3, 292-307, 1997 David P. Doane, Lori E. Seward, “Measuring Skewness”, Journal of Statistics Education, Volume 19, Number 2, 2011 F. De Carli, L. Nobili, P. Gelcich, and F. Ferrillo, “A method for the automatic detection of arousals during sleep”, Sleep, vol. 22, no. 5, p. 561, 1999. G. Pillar, A. Bar, et al., “Autonomic arousal index: an automated detection based on peripheral arterial tonometry', Sleep, vol. 25, no. 5, pp. 543~549, 2002. Soper, H.E., Young, A.W., Cave, B.M., Lee, A., Pearson, K., “On the distribution of the correlation coefficient in small samples”, pp. 328-413, 1917 Pillar G1, Bar A, Betito M, Schnall RP, “An automatic ambulatory device for detection of AASM defined arousals from sleep: the WP100”, Sleep Medicine, vol. 4, no. 3, pp. 207~212, 2003. T. Sugi, F. Kawana, and M. Nakamura, “Automatic EEG arousal detection for sleep apnea syndrome,' Biomedical Signal Processing and Control, vol. 4, no. 4, pp. 329 ~ 337, 2009 O. Shmiel, T. Shmiel, et al., “Data mining techniques for detection of sleep arousals”, Journal of Neuroscience Methods, vol. 179, no. 2, pp. 331 ~ 337, 2009 R. Agarwal, “Automatic detection of micro-arousals”, IEEE Engineering in Medicine and Biology Society, Annual Conference, vol. 2, p. 1158, 2005. Isaac Fern´andez-Varela1, Elena Hern´andez-Pereira1, “Automatic detection of EEG Arousals”, ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. (Belgium), 27-29 April, 2016 Yuemeng Liang, Cyril Leung, “Automatic sleep arousal detection based on C-ELM”, IEEE/WIC/ACM International Conference on Web Intelligence an Intelligent Agent Technology, (Singapore), February, 2016 Turk, Matthew, and Alex Pentland, “Eigenfaces for recognition”, Journal of cognitive neuroscience, 3.1: 71-86, 1991 David J., Peter N., “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, 1997 C. Burges, A tutorial in support vector machines for pattern recognition, Data mining and knowledge discovery, 1998 K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv: 1409.1556, 2014 Ron Kohavi, “A Study of Cross-Validation and Bootsrap for Accuracy Estimation and Model Selection”, International Joint Conference on Artificial Intelligence, 1995 Gangaputra, Sachin, “Handwritten digit database”, Retrieved 17 August 2013 Alex Krizhevsky, “Learning Multiple Features from Tiny Images”, April, 2009 J.R. Quinlan, “Induction of Decision Trees”, Machine Learning 1: 81-106, Boston, 1986 B. Hssina, A. Merbouha, “A Comparative study of decision tree ID3 and C4.5”, International Journal of Advanced Computer Science and Application, Special Issue on Advances in Vehicles Ad Hoc Networking and Application, pp.13-19, 2002 Leo Breiman., Bagging Predictors , Machine Learning, 24(2), 1996 Leo Breiman., Random Forest , Machine Learning, 45(1) 5-32, 2001 S. Albawi, T. A. Mohammed, S. Al-Zawi, 'Understanding of a convolutional neural network', Engineering and Technology (ICET) 2017 International Conference on. IEEE, pp. 1-6, 2017. Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proc. 2014 Conf. Empir. Methods Nat. Lang. Process., 2014: pp. 1746-1751. http://arxiv.org /abs/1408.5882. J.T. Connor, R.D. Martin, “Recurrent Neural Networks and Robust Time Series Prediction”, IEEE Transactions on Neural Networks, Vol. 5, March, 1994 Y. Bengio, R. Ducharme, P. Vincent, “A neural probabilistic language model”, Journal of Machine Learning Research, p.1137-1155, 2003 Sepp Hochreiter and Jurgen Schmidhuber, “Long Short Term Memory”, Journal of Neural Computation, Vol. 9, P. 1735-1780, 1997 M. Bonnet and D. Carley, “Eeg arousals: scoring rules and examples: a preliminary report from the sleep disorders atlas task force of the American sleep disorders association,” Sleep, vol. 15, no. 2, pp. 173–184, 1992. Data for the 2018 PhysioNet Computing in Cardiology Challenge, National Institute of General Medical Sciences (NIGMS) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB)[Online]. Available: https://physionet.org/physiobank/database/challenge/2018/ Welch PD, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms”, IEEE Trans Audio Electroacoust 15: 70–73, 1967 Thomson DJ, “Spectrum estimation and harmonic analysis.”, Proc IEEE 70: 1055–1096, 1982. Michael J. Prerau, Ritchie E. Brown, “Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis”, American Physiological Society 32: 60-92, Jan., 2017 Babadi B, Brown EN. “A review of multitaper spectral analysis.”, IEEE Trans Biomed Eng 61: 1555–1564, 2014. Daniel J. Velleman, “The Generalized Simpson's Rule”, The American Mathematical Monthly, Taylor & Francis, Vol. 112, No. 4, Apr., 2005 M. Sundermeyer, and H. Ney, “LSTM Neural Networks for Language Modeling”, ISCA’s 13th Annual Conference, USA, September, 2012 Karimollah Hajian-Tilaki,“Receiver Operating Characteristic Curve Analysis for Medical Diagnostic Test Evaluation”, Caspian Journal of Internal Medicine 4(2):627-635, 2013 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72880 | - |
dc.description.abstract | 過去幾年來智慧醫療領域越來越受重視,許多資訊科技包括雲端、遠距、大數據及人工智慧等,都已經大量應用於醫療領域。應用在病患監測服務、行動照護的需求大增,而睡眠診斷這一塊在其中受到非常大的重視,睡眠影響人的生活作息,要是沒有好的睡眠,人體就會失去正常機能運作。
在本國,睡眠醫療專家在診斷睡眠覺醒以及睡眠呼吸中止症這些症狀的方式還是必須讓病人在醫院睡一個晚上,利用睡眠多項生理儀(PSG)紀錄病人在這一個晚上的腦波圖、肌電圖、心電圖、眼動圖、血氧飽和濃度、胸腹呼吸動作還有口鼻呼吸氣流這些諸多的生理特徵,接著再由兩至三位睡眠專家根據以上的生理紀錄進行討論並且判斷這一位病人在某些時段是屬於正常的狀況或是發病的狀態,但這個階段非常曠日費時,甚至不同的睡眠專家之間也會有不同的意見,因此本論文透過近年快速崛起的深度學習以及機器學習技術,提出一套系統化、並且可靠、客觀的方式,在觀察大量資料之下,利用單一導程的腦電圖訊號,成功的將病人的睡眠覺醒(Sleep Arousal)狀態分辨出來,提供睡眠醫療專家參考,輔助監測病人身體狀態。 本論文首章節為論文簡介,第二章以及第三章為背景知識介紹,從第四章開始為本論文的主要貢獻,也就是系統架構設計,包含腦波訊號的前處理、特徵抽取、分類器架構…等,並在第五章探討模擬測試結果,末章則為結語與未來展望。 | zh_TW |
dc.description.abstract | In the past few years, the field of smart health has been more and more important. Lots of technology such as cloud computing、remote control、big data and artificial intelligence has already applied to medical diagnosis. Particularly, sleep problems are a frequent complaint among many people, especially the elderly, and have a substantial impact on quality of their lives. Sleep arousal conventionally refers to a temporary intrusion of wakefulness into sleep or at least a sudden transient elevation of the vigilance level due to arousal stimuli. And, many researches have shown that sleep arousals can induce various sleep disorders. Thus, arousals are a good marker of sleep disruption representing a harmful feature for sleep.
Nowadays, the method of detecting sleep arousals is to collect patient’s physiological data such as electroencephalography、electrocardiography and electromyography through an overnight polysomnography test. After getting these recordings, two to three sleep experts would score the arousal regions according to their background knowledge. However, manual scoring of arousals conducted by sleep experts is generally time-consuming and subjective. Moreover, different experts are very likely to have different opinions. Therefore, the objective of this study is to develop an algorithm for automatic detection of sleep arousals based on single lead electroencephalography (EEG) by using machine learning and deep learning methods. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:09:02Z (GMT). No. of bitstreams: 1 ntu-108-R06943025-1.pdf: 3763383 bytes, checksum: 0916325cfba6e6a16f0d7bb4f9547c7c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目次 i
中文摘要 iii Abstract iv 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 研究主題及主要貢獻 1 1.3 論文架構 2 第二章 睡眠覺醒概述 3 2.1睡眠呼吸中止症 3 2.2睡眠覺醒 5 2.3腦波原理及特徵 9 2.4睡眠覺醒偵測簡述 14 第三章 機器學習及深度學習簡介 20 3.1 資料集 21 3.1.1 資料集表示法 21 3.1.2 訓練集與測試集 22 3.2 隨機森林 26 3.2.1 決策樹 26 3.2.2 隨機森林 27 3.3 卷積神經網路 30 3.3.1 二維卷積神經網路 30 3.3.1.1 卷積層 31 3.3.1.2 池化層 33 3.3.1.3 全連接層 34 3.3.2 一維卷積神經網路 36 3.4 長短期記憶網路 39 3.4.1 遞迴神經網路 39 3.4.2 長短期記憶網路 41 第四章 睡眠覺醒監測系統設計 44 4.1 腦電訊號樣本前處理 46 4.1.1 樣本集 46 4.1.2 前處理 49 4.1.2.1 消除雜訊 49 4.1.2.2 訊號裁切 51 4.1.2.3 給予相對應之標籤 52 4.2 腦波特徵擷取 54 4.2.1 功率頻譜密度特徵 54 4.2.2 頻帶功率特徵 60 4.2.3 專家定義之特徵 62 4.3 分類器架構 64 4.3.1 子模型 65 4.3.1.1 波形特徵之模型 65 4.3.1.2 頻帶功率特徵之模型 68 4.3.1.3 專家定義特徵之模型 70 4.3.2 子模型之結合 71 第五章 系統模擬結果 75 5.1 模擬正確性之驗證 75 5.2 模擬結果與比較 79 5.2.1 波形特徵結果 79 5.2.2 頻帶功率特徵結果 82 5.2.3 專家定義之特徵結果 85 5.2.4 子模型結合結果 90 第六章 結論與未來展望 97 6.1 結論 97 6.2 未來展望 98 參考資料 99 | |
dc.language.iso | zh-TW | |
dc.title | 以單導程腦電圖訊號進行睡眠覺醒事件偵測之研究 | zh_TW |
dc.title | Automatic sleep arousal detection based on single lead EEG | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 錢膺仁(Ying-Ren Chen) | |
dc.contributor.oralexamcommittee | 馬文忠(Wen-Zhong Ma),黃建嘉(Jian-Jia Huang) | |
dc.subject.keyword | 睡眠覺醒,腦電圖,機器學習,深度學習,睡眠多項生理儀, | zh_TW |
dc.subject.keyword | Arousal,EEG,Polysomnography,Deep Learning, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU201901699 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-23 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。