請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72856完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平(Chang-Ping Yu) | |
| dc.contributor.author | Yu-Chun Chen | en |
| dc.contributor.author | 陳育囷 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:08:16Z | - |
| dc.date.available | 2024-07-31 | |
| dc.date.copyright | 2019-07-31 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-23 | |
| dc.identifier.citation | Adams, L. F., & Ghiorse, W. C. (1987). Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. Journal of bacteriology, 169(3), 1279-1285.
Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied microbiology and biotechnology, 78(3), 409-418. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y., & Ueki, K. (2003). Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. International journal of systematic and evolutionary microbiology, 53(6), 1991-1998. Al Atrouni, A., Joly-Guillou, M. L., Hamze, M., & Kempf, M. (2016). Reservoirs of non-baumannii Acinetobacter species. Frontiers in microbiology, 7, 49. Amdursky, N., Marchak, D., Sepunaru, L., Pecht, I., Sheves, M., & Cahen, D. (2014). Electronic transport via proteins. Advanced Materials, 26(42), 7142-7161. Anandham, R., Weon, H. Y., Kim, S. J., Kim, Y. S., Kim, B. Y., & Kwon, S. W. (2010). Acinetobacter brisouii sp. nov., isolated from a wetland in Korea. The Journal of Microbiology, 48(1), 36-39. Ang, L. I., Yuanyuan, Q. U., Jiti, Z. H. O. U., & Min, G. O. U. (2009). Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. Journal of Environmental Sciences, 21(2), 211-217. Bacosa, H. P., Suto, K., & Inoue, C. (2013). Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. Journal of Environmental Science and Health, Part A, 48(8), 835-846. Basharat, Z., Yasmin, A., He, T., & Tong, Y. (2018). Genome sequencing and analysis of Alcaligenes faecalis subsp. phenolicus MB207. Scientific reports, 8(1), 3616. Bhattacharya, D., Sarma, P. M., Krishnan, S., Mishra, S., & Lal, B. (2003). Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl. Environ. Microbiol., 69(3), 1435-1441. Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and environmental microbiology, 69(3), 1548-1555. Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295(5554), 483-485. Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., ... & Rabaey, K. (2008). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology, 77(5), 1119-1129. Bordenave, S., Goñi-Urriza, M. S., Caumette, P., & Duran, R. (2007). Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol., 73(19), 6089-6097. Cai, H., Wang, J., Bu, Y., & Zhong, Q. (2013). Treatment of carbon cloth anodes for improving power generation in a dual‐chamber microbial fuel cell. Journal of Chemical Technology & Biotechnology, 88(4), 623-628. Cervantes, F. J., Dijksma, W., Duong-Dac, T., Ivanova, A., Lettinga, G., & Field, J. A. (2001). Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Applied and environmental microbiology, 67(10), 4471-4478. Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource technology, 100(14), 3518-3525. Chae, K. J., Choi, M., Ajayi, F. F., Park, W., Chang, I. S., & Kim, I. S. (2007). Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 22(1), 169-176. Cheng, Y., Yan, F., Huang, F., Chu, W., Pan, D., Chen, Z., ... & Wu, Z. (2010). Bioremediation of Cr (VI) and immobilization as Cr (III) by Ochrobactrum anthropi. Environmental science & technology, 44(16), 6357-6363. Choi, Y., Kim, N., Kim, S., & Jung, S. (2003). Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bulletin-Korean Chemical Society, 24(4), 437-440. de Lucena, R. M., Gavazza, S., Florencio, L., Kato, M. T., & de Morais, M. A. (2011). Study of the microbial diversity in a full-scale UASB reactor treating domestic wastewater. World Journal of Microbiology and Biotechnology, 27(12), 2893-2902. de Vrind, J. P., de Vrind-de Jong, E. W., de Voogt, J. W. H., Westbroek, P., Boogerd, F. C., & Rosson, R. A. (1986). Manganese oxidation by spores and spore coats of a marine Bacillus species. Applied and environmental microbiology, 52(5), 1096-1100. Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology advances, 25(5), 464-482. Ezemba, C. C., Ekwealor, C. C., Ekwealor, I. A., Ozokpo, C. A., Chukwujekwu, C. E., Anakwenze, V. N., ... & Anaukwu, G. C. (2015). Microbacterium lacticum; a lysine producing bacterium isolated from oil-contaminated soil in South-East Nigeria. British Microbiology Research Journal, 9(2). Fedorovich, V., Knighton, M. C., Pagaling, E., Ward, F. B., Free, A., & Goryanin, I. (2009). Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl. Environ. Microbiol., 75(23), 7326-7334. Feng, C., Ma, L., Li, F., Mai, H., Lang, X., & Fan, S. (2010). A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 25(6), 1516-1520. Fu, X., Cui, G., Huang, K., Chen, X., Li, F., Zhang, X., & Li, F. (2016). Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community. Environmental Science and Pollution Research, 23(5), 4522-4530. Gomes, A. S., La Rotta, C. E., Nitschke, M., & González, E. R. (2011). Evaluation of current output in Pseudomonas aeruginosa microbial fuel cells using glycerol as susbtrate and Nafion 117 as proton exchange membrane. ECS Transactions, 41(1). Gralnick, J. A., & Newman, D. K. (2007). Extracellular respiration. Molecular microbiology, 65(1), 1-11. He, Z., & Mansfeld, F. (2009). Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy & Environmental Science, 2(2), 215-219. Holmes, D. E., Chaudhuri, S. K., Nevin, K. P., Mehta, T., Methé, B. A., Liu, A., ... & Lovley, D. R. (2006). Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environmental Microbiology, 8(10), 1805-1815. Hosseini, F., Malekzadeh, F., Amirmozafari, N., & Ghaemi, N. (2007). Biodegradation of anionic surfactants by isolated bacteria from activated sludge. International Journal of Environmental Science & Technology, 4(1), 127-132. Huang, L., Xue, H., Zhou, Q., Zhou, P., & Quan, X. (2018). Imaging and distribution of Cd (II) ions in electrotrophs and its response to current and electron transfer inhibitor in microbial electrolysis cells. Sensors and Actuators B: Chemical, 255, 244-254. Huston, W. M., Jennings, M. P., & McEwan, A. G. (2002). The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Molecular microbiology, 45(6), 1741-1750. Huys, G., Bartie, K., Cnockaert, M., Oanh, D. T. H., Phuong, N. T., Somsiri, T., ... & Teale, A. (2007). Biodiversity of chloramphenicol-resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. Research in microbiology, 158(3), 228-235. Jadhav, S. S., & David, M. (2016). Biodegradation of flubendiamide by a newly isolated Chryseobacterium sp. strain SSJ1. 3 Biotech, 6(1), 31. Jeong, J. J., Lee, D. W., Park, B., Sang, M. K., Choi, I. G., & Kim, K. D. (2017). Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. International journal of systematic and evolutionary microbiology, 67(3), 610-616. Jiang, Y., Wen, J., Bai, J., Jia, X., & Hu, Z. (2007). Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. Journal of Hazardous Materials, 147(1-2), 672-676. Jung, H. M., Ten, L. N., Kim, K. H., An, D. S., Im, W. T., & Lee, S. T. (2009). Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. International journal of systematic and evolutionary microbiology, 59(3), 460-465. Kato Marcus, A., Torres, C. I., & Rittmann, B. E. (2007). Conduction‐based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171-1182. Kim, B. H., Park, D. H., Shin, P. K., Chang, I. S., & Kim, H. J. (1999). U.S. Patent No. 5,976,719. Washington, DC: U.S. Patent and Trademark Office. Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J., & Phung, N. T. (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied microbiology and biotechnology, 63(6), 672-681. Kim, B., An, J., Fapyane, D., & Chang, I. S. (2015). Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: from nano-to macro scopes. Bioresource technology, 195, 2-13. Kim, G. T., Webster, G., Wimpenny, J. W. T., Kim, B. H., Kim, H. J., & Weightman, A. J. (2006). Bacterial community structure, compartmentalization and activity in a microbial fuel cell. Journal of applied microbiology, 101(3), 698-710. Kim, H. S., Sang, M. K., Jung, H. W., Jeun, Y. C., Myung, I. S., & Kim, K. D. (2012). Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop protection, 32, 129-137. Kim, Y. H., Park, Y. J., Song, S. H., & Yoo, Y. J. (2007). Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical bioreactor. Enzyme and microbial technology, 41(5), 663-668. Koch, C., & Harnisch, F. (2016). Is there a specific ecological niche for electroactive microorganisms?. ChemElectroChem, 3(9), 1282-1295. Kodama, Y., Shimoyama, T., & Watanabe, K. (2012). Dysgonomonas oryzarvi sp. nov., isolated from a microbial fuel cell. International journal of systematic and evolutionary microbiology, 62(12), 3055-3059. Li, A., Qu, Y., Zhou, J., & Ma, F. (2009). Characterization of a newly isolated biphenyl-degrading bacterium, Dyella ginsengisoli LA-4. Applied biochemistry and biotechnology, 159(3), 687. Li, J., Li, H., Zheng, J., Zhang, L., Fu, Q., Zhu, X., & Liao, Q. (2017). Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities. Bioresource technology, 233, 1-6. Li, M., Zhou, M., Tian, X., Tan, C., McDaniel, C. T., Hassett, D. J., & Gu, T. (2018). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnology advances. Li, Z., Zhang, Y., LeDuc, P. R., & Gregory, K. B. (2011). Microbial electricity generation via microfluidic flow control. Biotechnology and bioengineering, 108(9), 2061-2069. Liu, C. T., Lin, S. Y., Hameed, A., Liu, Y. C., Hsu, Y. H., Wong, W. T., ... & Young, C. C. (2017). Oryzomicrobium terrae gen. nov., sp. nov., of the family Rhodocyclaceae isolated from paddy soil. International journal of systematic and evolutionary microbiology, 67(2), 183-189. Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental science & technology, 38(7), 2281-2285. Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375. Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. TRENDS in Microbiology, 14(12), 512-518. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., ... & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental science & technology, 40(17), 5181-5192. Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497. Lovley, D. R., & Phillips, E. J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and environmental microbiology, 54(6), 1472-1480. Lovley, D. R., Holmes, D. E., & Nevin, K. P. (2004). Dissimilatory fe (iii) and mn (iv) reduction. Lovley, D. R., Woodward, J. C., & Chapelle, F. H. (1996). Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe (III) Forms. Applied and Environmental Microbiology, 62(1), 288-291. Lu, A., Li, Y., Jin, S., Wang, X., Wu, X. L., Zeng, C., ... & Tang, Y. (2012). Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications, 3, 768. Mastroianni, A., Cancellieri, C., & Montini, G. (1999). Ochrobactrum anthropi bacteremia: case report and review of the literature. Clinical microbiology and infection, 5(9), 570-573. McKnight, D. M., & Aiken, G. R. (1998). Sources and age of aquatic humus. In Aquatic humic substances (pp. 9-39). Springer, Berlin, Heidelberg. Mehmood, C. T., Qazi, I. A., Hashmi, I., Bhargava, S., & Deepa, S. (2016). Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. International Biodeterioration & Biodegradation, 113, 276-286. Michaelidou, U., ter Heijne, A., Euverink, G. J. W., Hamelers, H. V., Stams, A. J., & Geelhoed, J. S. (2011). Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Appl. Environ. Microbiol., 77(3), 1069-1075. Mokashi, S. A., & Paknikar, K. M. (2002). Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Letters in Applied Microbiology, 34(4), 258-262. Nishio, K., Hashimoto, K., & Watanabe, K. (2010). Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Applied microbiology and biotechnology, 86(3), 957-964. Oliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical engineering journal, 73, 53-64. Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource technology, 90(1), 71-74. Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 101(6), 1533-1543. Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and environmental microbiology, 66(4), 1292-1297. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., ... & Chang, H. I. (2001). A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 7(6), 297-306. Patil, S. A., Harnisch, F., Kapadnis, B., & Schröder, U. (2010). Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosensors and Bioelectronics, 26(2), 803-808. Pereira-Medrano, A. G., Knighton, M., Fowler, G. J., Ler, Z. Y., Pham, T. K., Ow, S. Y., ... & Wright, P. C. (2013). Quantitative proteomic analysis of the exoelectrogenic bacterium Arcobacter butzleri ED-1 reveals increased abundance of a flagellin protein under anaerobic growth on an insoluble electrode. Journal of proteomics, 78, 197-210. Pérez-Cataluña, A., Salas-Massó, N., & Figueras, M. J. (2018). Arcobacter lacus sp. nov. and Arcobacter caeni sp. nov., two novel species isolated from reclaimed water. International journal of systematic and evolutionary microbiology. Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., ... & Gorby, Y. A. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences, 111(35), 12883-12888. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B, 84(571), 260-276. Prakash, O., Kumari, K., & Lal, R. (2007). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. International journal of systematic and evolutionary microbiology, 57(3), 527-531. Qian, F., & Morse, D. E. (2011). Miniaturizing microbial fuel cells. Trends in biotechnology, 29(2), 62-69. Qian, F., Baum, M., Gu, Q., & Morse, D. E. (2009). A 1.5 µL microbial fuel cell for on-chip bioelectricity generation. Lab on a Chip, 9(21), 3076-3081. Qiao, Y., Li, C. M., Bao, S. J., & Bao, Q. L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79-84. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291-298. Rabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental science & technology, 39(9), 3401-3408. Ramasamy, R. P., Ren, Z., Mench, M. M., & Regan, J. M. (2008). Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and bioengineering, 101(1), 101-108. Ramos, P. L., Van Trappen, S., Thompson, F. L., Rocha, R. C., Barbosa, H. R., De Vos, P., & Moreira-Filho, C. A. (2011). Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. International journal of systematic and evolutionary microbiology, 61(4), 926-931. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098. Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and environmental microbiology, 72(11), 7345-7348. Rehfuss, M., & Urban, J. (2005). Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Systematic and applied microbiology, 28(5), 421-429. Ren, H., Lee, H. S., & Chae, J. (2012). Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluidics and Nanofluidics, 13(3), 353-381. Richter, H., Lanthier, M., Nevin, K. P., & Lovley, D. R. (2007). Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe (III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Applied and environmental microbiology, 73(16), 5347-5353. Rismani‐Yazdi, H., Christy, A. D., Dehority, B. A., Morrison, M., Yu, Z., & Tuovinen, O. H. (2007). Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and bioengineering, 97(6), 1398-1407. Ross, D. E., Ruebush, S. S., Brantley, S. L., Hartshorne, R. S., Clarke, T. A., Richardson, D. J., & Tien, M. (2007). Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Applied and environmental microbiology, 73(18), 5797-5808. Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., ... & Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7(7), 514. Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181. Sani, R., Peyton, B., Smith, W., Apel, W., & Petersen, J. (2002). Dissimilatory reduction of Cr (VI), Fe (III), and U (VI) by Cellulomonas isolates. Applied Microbiology and Biotechnology, 60(1-2), 192-199. Sarma, P. M., Bhattacharya, D., Krishnan, S., & Lal, B. (2004). Assessment of intra-species diversity among strains of Acinetobacter baumannii isolated from sites contaminated with petroleum hydrocarbons. Canadian journal of microbiology, 50(6), 405-414. Shen, E., Yuanyuan, Q. U., Hao, Z. H. O. U., Chunlei, K. O. N. G., Qiao, M. A., ZHANG, X., & Jiti, Z. H. O. U. (2013). Catalytic performance and stability of CC bond hydrolase BphD immobilized onto single-wall carbon nanotubes. Chinese journal of catalysis, 34(4), 723-733. Shen, H. B., Yong, X. Y., Chen, Y. L., Liao, Z. H., Si, R. W., Zhou, J., ... & Zheng, T. (2014). Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresource technology, 167, 490-494. Thung, W. E., Ong, S. A., Ho, L. N., Wong, Y. S., Ridwan, F., Oon, Y. L., ... & Lehl, H. K. (2015). A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater. Bioresource technology, 197, 284-288. Thygesen, A., Marzorati, M., Boon, N., Thomsen, A. B., & Verstraete, W. (2011). Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Applied microbiology and biotechnology, 89(3), 855-865. Torres, C. I., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A. K., Wanger, G., Gorby, Y. A., & Rittmann, B. E. (2009). Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environmental science & technology, 43(24), 9519-9524. Viamajala, S., Smith, W. A., Sani, R. K., Apel, W. A., Petersen, J. N., Neal, A. L., ... & Peyton, B. M. (2007). Isolation and characterization of Cr (VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresource Technology, 98(3), 612-622. Von Canstein, H., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and environmental microbiology, 74(3), 615-623. Wandelt, K. (2018). Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier. Wang, H. Y., & Su, J. Y. (2013). Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresource technology, 145, 271-274. Wang, X., Feng, Y., Liu, J., Lee, H., & Ren, N. (2011). Performance of a batch two‐chambered microbial fuel cell operated at different anode potentials. Journal of Chemical Technology & Biotechnology, 86(4), 590-594. Wang, X., Feng, Y., Ren, N., Wang, H., Lee, H., Li, N., & Zhao, Q. (2009). Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochimica Acta, 54(3), 1109-1114. Wang, Y., Liu, J., Kang, D., Wu, C., & Wu, Y. (2017). Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review. Reviews in Environmental Science and Bio/Technology, 16(4), 717-735. Wang, Z., Zhang, B., Jiang, Y., Li, Y., & He, C. (2018). Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells. Applied Energy, 209, 33-42. Webb, S. M., Dick, G. J., Bargar, J. R., & Tebo, B. M. (2005). Evidence for the presence of Mn (III) intermediates in the bacterial oxidation of Mn (II). Proceedings of the National Academy of Sciences, 102(15), 5558-5563. Weibel, D. B., DiLuzio, W. R., & Whitesides, G. M. (2007). Microfabrication meets microbiology. Nature Reviews Microbiology, 5(3), 209. Xiao, Y., Zhang, E., Zhang, J., Dai, Y., Yang, Z., Christensen, H. E., ... & Zhao, F. (2017). Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science advances, 3(7), e1700623. Yamamuro, A., Kouzuma, A., Abe, T., & Watanabe, K. (2014). Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells. PloS one, 9(5), e98425. Yang, Y., Xu, M., Guo, J., & Sun, G. (2012). Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry, 47(12), 1707-1714. Yang, Y., Ye, D., Li, J., Zhu, X., Liao, Q., & Zhang, B. (2016). Microfluidic microbial fuel cells: from membrane to membrane free. Journal of Power Sources, 324, 113-125. Yasir, M., Chung, E. J., Song, G. C., Bibi, F., Jeon, C. O., & Chung, Y. R. (2011). Chitinophaga eiseniae sp. nov., isolated from vermicompost. International journal of systematic and evolutionary microbiology, 61(10), 2373-2378. Yong, X. Y., Shi, D. Y., Chen, Y. L., Jiao, F., Lin, X., Zhou, J., ... & Zheng, T. (2014). Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresource technology, 152, 220-224. Yuan, H., Sun, S., Abu-Reesh, I. M., Badgley, B. D., & He, Z. (2017). Unravelling and reconstructing the nexus of salinity, electricity, and microbial ecology for bioelectrochemical desalination. Environmental science & technology, 51(21), 12672-12682. Zeng, C., Li, Y., Lu, A., Ding, H., Wang, X., & Wang, C. (2012). Electrochemical Interaction of a Heterotrophic Bacteria Alcaligenes faecalis with a Graphite Cathode. Geomicrobiology Journal, 29(3), 244-249. Zhang, G., Zhao, Q., Jiao, Y., Wang, K., Lee, D. J., & Ren, N. (2012). Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosensors and Bioelectronics, 31(1), 537-543. Zhang, G., Zhao, Q., Jiao, Y., Wang, K., Lee, D. J., & Ren, N. (2012). Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell. Water research, 46(1), 43-52. Zhang, S., You, J., An, N., Zhao, J., Wang, L., Cheng, Z., ... & Chen, J. (2018). Gaseous toluene powered microbial fuel cell: Performance, microbial community, and electron transfer pathway. Chemical Engineering Journal, 351, 515-522. Zhao, L., Zhou, J., Jia, Y., & Chen, J. (2010). Biodecolorization of Acid Red GR by a newly isolated Dyella ginsengisoli LA-4 using response surface methodology. Journal of hazardous materials, 181(1-3), 602-608. Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427-4435. Zhu, X., Yates, M. D., Hatzell, M. C., Ananda Rao, H., Saikaly, P. E., & Logan, B. E. (2014). Microbial community composition is unaffected by anode potential. Environmental science & technology, 48(2), 1352-1358. Zuo, Y., Xing, D., Regan, J. M., & Logan, B. E. (2008). Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol., 74(10), 3130-3137. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72856 | - |
| dc.description.abstract | 微生物燃料電池為一種再生能源,電池中具有電化學活性之微生物,能氧化廢水中的營養物質,達到處理污染物同時又產生電能之效果,因而此技術逐漸受到關注。本研究施加恆電位(200 mV、0 mV、−200 mV、−400 mV)於陽極進行電化學活性菌之馴養,待系統穩定後進行次世代定序與電化學活性(極化曲線、功率密度曲線、循環伏安法與電化學阻抗分析)的分析。分析完畢後,進行單一菌株分離之篩選,將馴養之混菌分離成為單一純菌,並將其置於微流道系統中進行單一菌株產電能力之評估。
結果顯示,施加−200 mV恆電位馴養之生物陽極具有較佳表現,該系統產生最大功率密度187.3 mW m-2,並於電化學阻抗分析中觀測出電極極化阻抗由9206降至105.8 ohms、總內阻為337 ohms,並由循環伏安法觀測出明顯之氧化還原波峰。 本研究所純化出的單一菌落普遍具有生物修復性,其中五株菌株Acinetobacter brisouii、Arcobacter lacus、Chryseobacterium cucumeris、Pseudomonas citronellolis、Pseudomonas delhiensis為尚未被評估產電能力之菌株,於本研究所建立之快篩系統觀測出具相當產電潛力。最後期許未來能將此系統加以精進並廣泛應用,以利後人更加了解單一微生物之電化學機制。 | zh_TW |
| dc.description.abstract | Microbial fuel cell (MFC) is one kind of green energy harvesting techniques. Although many exoelectrogens as essential anode-respiring bacteria have been proved to be able to produce electricity and treat pollutants simultaneously, there are still many potential exoelectrogens unclear and warrant the need for further research.
In this study, mixed-culture exoelectrogens were steadily cultivated under constant potential in the dual-chamber microbial fuel cells with microbial community analyses and electrochemical performance of biofilms being evaluated by utilizing 16S rRNA gene high throughput sequencing and power density curve, polarization curve, electrochemical impedance spectroscopy and cyclic voltammetry. After isolating diverse pure bacterial strains from the anode biofilms, we established a fast-screening system using the microfluidic laminar flow MFC (MLFMFC). By inoculating the isolated strains in the anode of MLFMFC and measuring its open circuit and closed circuit voltages, we can rapidly and efficiently identify the electroactive bacteria among these isolates. Results showed the bioanode domesticated under a constant potential of −200 mV had the better performance with maximum power density of 187.3 mW m-2. Acinetobacter brisouii, Arcobacter lacus, Chryseobacterium cucumeris, Pseudomonas citronellolis, and Pseudomonas delhiensis were isolated and first proved to be capable of producing electricity in this study by our fast-screening systems. In conclusion, this fast-screening system was successfully established and verified and it is expected to be widely utilized in the future to better isolate effective exoelectrogens. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:08:16Z (GMT). No. of bitstreams: 1 ntu-108-R06541205-1.pdf: 4732675 bytes, checksum: 48564cb57bba6fbd56f568a2516f1fbf (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
致謝 III 中文摘要 V Abstract VI 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究流程 3 第二章 文獻回顧 5 2.1 微生物燃料電池發展與原理 5 2.1.1 生物電化學系統沿革 5 2.1.2 微生物燃料電池原理 6 2.1.3 微生物燃料電池之生物修復應用 9 2.2 雙槽式微生物燃料電池之陽極菌叢 10 2.2.1 產電菌株與電子傳遞機制探討 10 2.2.2 陽極電化學活性生物膜之富集與馴養 16 2.2.3 常見陽極菌株 17 2.3 微型微生物燃料電池 21 2.3.1 微型微生物燃料電池發展與應用 21 2.3.2 微流道微生物燃料電池 22 2.4 電化學方法於產電成效之應用 24 2.4.1 循環伏安法 24 2.4.2 交流阻抗法 24 第三章 材料與方法 25 3.1 實驗藥品與設備 25 3.1.1 實驗藥品 25 3.1.2 實驗設備 27 3.2 雙槽式微生物燃料電池生電化系統組態 28 3.2.1 雙槽式微生物燃料電池 28 3.2.1.1 雙槽式微生物燃料電池構型 28 3.2.1.2 電極前處理 29 3.2.1.3 質子交換膜前處理 30 3.2.1.4 雙槽式微生物燃料電池運行 30 3.2.2 微生物實驗 32 3.2.2.1 接種源及馴養 32 3.2.2.2 篩選菌落培養基選定 33 3.2.2.3 微生物DNA萃取 35 3.2.2.4 聚合酶連鎖反應 36 3.2.2.5 電泳膠片 37 3.2.2.6 16S rRNA 定序及次世代定序 37 3.2.2.7 螢光顯微鏡 39 3.3 微型微生物燃料電池生電化系統組態 40 3.3.1 微流道微生物燃料電池構型 40 3.3.2 微流道微生物燃料電池運行—產電菌快篩試驗 40 3.4 電化學分析 42 3.4.1 功率密度與極化曲線 42 3.4.2 循環伏安法 44 3.4.3 電化學阻抗譜 46 3.4.4 掃描式電子顯微鏡 48 第四章 結果與討論 49 4.1 雙槽式生物陽極之表現 49 4.1.1 生物陽極菌株結果 49 4.1.1.1 菌群結構 49 4.1.1.2 菌株純化 52 4.1.2 電化學分析 64 4.1.2.1 不同電位馴養生物陽極之成效 64 4.1.2.2 功率密度與極化曲線 67 4.1.2.3 循環伏安法 70 4.1.2.4 電化學阻抗譜 72 4.1.2.5 掃描式電子顯微鏡 75 4.2單一菌株於微流道槽體之表現 77 4.2.1 第一階段產電效能試驗與螢光顯微鏡驗證 77 4.2.2 單一菌株之產電效能評估 81 4.2.5 單一菌株之掃描式電子顯微鏡 86 第五章 結論與建議 89 5.1 結論 89 5.2 建議 90 第六章 參考文獻 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微流道微生物燃料電池 | zh_TW |
| dc.subject | 快速篩選產電菌 | zh_TW |
| dc.subject | 微生物燃料電池 | zh_TW |
| dc.subject | 生物修復 | zh_TW |
| dc.subject | 恆電位 | zh_TW |
| dc.subject | 生物陽極 | zh_TW |
| dc.subject | microchannel microbial fuel cell | en |
| dc.subject | rapid screening of electrogenic bacteria | en |
| dc.subject | microbial fuel cell | en |
| dc.subject | constant potential | en |
| dc.subject | bioanode | en |
| dc.subject | bioremediation | en |
| dc.title | 定電位馴養電活性菌應用於微流道微生物燃料電池快篩系統 | zh_TW |
| dc.title | Selecting Exoelectrogens Based on Constant Anode Potential: Application of Fast-screening in Microfluidic Laminar Flow Microbial Fuel Cell System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭獻文(Hsion?Wen Kuo),林居慶(Chu-Ching Lin) | |
| dc.subject.keyword | 微生物燃料電池,恆電位,生物陽極,生物修復,微流道微生物燃料電池,快速篩選產電菌, | zh_TW |
| dc.subject.keyword | microbial fuel cell,constant potential,bioanode,bioremediation,microchannel microbial fuel cell,rapid screening of electrogenic bacteria, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201901839 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
