請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72844
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳凱儀 | |
dc.contributor.author | Yan-Cheng Lin | en |
dc.contributor.author | 林晏丞 | zh_TW |
dc.date.accessioned | 2021-06-17T07:07:52Z | - |
dc.date.available | 2022-07-25 | |
dc.date.copyright | 2019-07-25 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-24 | |
dc.identifier.citation | 方昱富 (2018)。高溫下番茄花粉數量及花粉活性之數量性狀基因座定位以及轉錄體分析。臺灣大學農藝學研究所學位論文
Abiko, M., Akibayashi, K., Sakata, T., Kimura, M., Kihara, M., Itoh, K., …Higashitani, A. (2005). High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 18(2), 91-100. Ahmed, F. E., Hall, A. E. & Demason, D. A. (1992) Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany 79, 784–791. Alexander, L. J. (1971) Host-pathogen dynamics of tobacco mosaic virus on tomato. Phytopathology, 61, 611. Anders, S. & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11, R106. Andrews, S. (2010). FASTQC. A quality control tool for high throughput sequence data Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc Baker, T. A., & Sauer, R. T. (2012). ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta 1823, 15–28. Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. Battisti, D. S. & Naylor, R. L. (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009; 323: 240–44. Bhardwaj, A., Dhar, Y. V., Asif, M. H., & Bag, S. K. (2016). In Silico identification of SNP diversity in cultivated and wild tomato species: insight from molecular simulations. Scientific Reports, 6, 38715. Böhmdorfer, G., Schleiffer A., Brunmeir, R., Ferscha, S., Nizhynska, V., Kozák, J., Angelis, K.J., Kreil, D.P. & Schweizer, D. (2011). GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. Plant Journal, 67(3), 420-433. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. Boyko, A., Filkowski, J., & Kovalchuk, I. (2005). Homologous recombination in plants is temperature and day-length dependent. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 572(1-2), 73-83. Broman K. W., Wu H., Sen Ś. & Churchill G. A. (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890. Buels, R., Yao, E., Diesh, C. M., Hayes, R. D., Munoz-Torres, M., Helt, G., …Holmes, I. H. (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biology, 17, 1-12. Burr, B., & Burr, F. A. (1991). Recombinant Inbreds for Molecular Mapping in Maize - Theoretical and Practical Considerations. Trends in Genetics, 7(2), 55-60. Camejo, D., Rodriguez, P., Morales, A., Dell'Amico, J. M., Torrecillas, A., & Alarcon, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162(3), 281-289. Chetelat, R. T., & Meglic, V. (2000). Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theoretical and Applied Genetics, 100(2), 232-241. De Storme, N., & Geelen, D. (2014). The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell and Environment, 37(1), 1-18. Dillies, M. A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., …Consortium, F. S. (2013). A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings in Bioinformatics, 14(6), 671-683. Dinar M. & Rudich J. (1985) Effect of Heat-Stress on Assimilate Partitioning in Tomato. Annals of Botany, 56(2), 239-248. Driedonks, N., Wolters-Arts, M., Huber, H., de Boer, G. J., Vriezen, W., Mariani, C., & Rieu, I. (2018). Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica, 214(4). Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., …Kawagishi-Kobayashi, M. (2009). High Temperatures Cause Male Sterility in Rice Plants with Transcriptional Alterations During Pollen Development. Plant and Cell Physiology, 50(11), 1911-1922. Firon, N., Shaked, R., Peet, M. M., Pharr, D. M., Zamski, E., Rosenfeld, K., Pressman, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae, 109(3), 212-217. Francis, K. E., Lam, S. Y., Harrison, B. D., Bey, A. L., Berchowitz, L. E., & Copenhaver, G. P. (2007). Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 3913-3918. Galpaz, N., Gonda, I., Shem-Tov, D., Barad, O., Tzuri, G., Lev, S., …Katzir, N. (2018). Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant Journal, 94(1), 169-191. Geisenberg C. & Stewart K. (1986) Field crop management. In: The Tomato Crop (eds J.G. Atherton & J. Rudich), pp. 511–557. Chapman & Hall, London. Ginestet, C. (2011). ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society Series a-Statistics in Society, 174, 245-245. Goldberg, R. B., Beals, T. P., & Sanders, P. M. (1993). Anther Development - Basic Principles and Practical Applications. Plant Cell, 5(10), 1217-1229. Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). QTL identification for tolerance to fruit set in tomato by fAFLP markers. Crop Breeding and Applied Biotechnology, 7(3), 234-241. Gu, Z. G., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811-2812. Haldane, J. B. S., & Waddington, C. H. (1931). Inbreeding and linkage. Genetics, 16(4), 0357-0374. Haldane J. B. S. (1919) The combination of linkage values, and the calculation of distance between loci of linked factors. J Genet, 8 , 299-309 Hall A. E. (1992). Breeding for heat tolerance. Plant Breed. Rev., 10, pp. 29-167 Hall, T. J. (1980). Resistance at the Tm-2 Locus in the Tomato to Tomato Mosaic-Virus. Euphytica, 29(1), 189-197. Hanson, P. M., Chen, J., & Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. Hortscience, 37(1), 172-175. Harsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., & Sage, T. L. (2013). High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Journal of Experimental Botany, 64(10), 2971-2983. Iwahori, S. (1965). High temperature injuries in tomato. IV Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature. Journal of the Japanese Society for Horticultural Science, 34(1), 33-41. Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 20(3), 271-284. Kaisers, W. (2019). refGenome: Gene and Splice Site Annotation Using Annotation Data from 'Ensembl' and 'UCSC' Genome Browsers. R package version 1.7.7. Kamel, M., Soliman, S., Mandour, A., & Ahmed, M. (2010). Genetic evaluation and molecular markers for heat tolerance in tomato (Lycopersicon esculentum Mill.). Journal of American Science 6, 364-374. Kartikeya, S., Sunil, K., Surender, K., Pravin, P., & Vaishampayan, A. (2012) Screening of tomato genotypes for reproductive characters under high temperature stress conditions. Sabrao J Breed Genet 44, 263–276. Kim, D., Landmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-U121. Kim, S. Y., Hong, C. B., & Lee, I. (2001). Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. Journal of Plant Research, 114(1115), 301-307. Lawrence, M., Gentleman, R., & Carey, V. (2009). rtracklayer: an R package for interfacing with genome browsers. Bioinformatics, 25(14), 1841-1842. Levy, A., Rabinowitch, H. D., & Kedar, N. (1978). Morphological and Physiological Characters Affecting Flower Drop and Fruit Set of Tomatoes at High-Temperatures. Euphytica, 27(1), 211-218. Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987-2993. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., & 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. Li, J., Xu, Y. C., & Wang, Z. H. (2019). Construction of a high-density genetic map by RNA sequencing and eQTL analysis for stem length and diameter in Dendrobium (Dendrobium nobile x Dendrobium wardianum). Industrial Crops and Products, 128, 48-54. Li, R., Jeong, K., Davis, J. T., Kim, S., Lee, S., Michelmore, R. W., …Maloof, J. N. (2018). Integrated QTL and eQTL Mapping Provides Insights and Candidate Genes for Fatty Acid Composition, Flowering Time, and Growth Traits in a F2 Population of a Novel Synthetic Allopolyploid Brassica napus. Frontiers in Plant Science 9(1632). Lin, K. H., Yeh, W. L., Chen, H. M., & Lo, H. F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). Manna, S. (2015). An overview of pentatricopeptide repeat proteins and their applications. Biochimie, 113, 93-99. Menda, N., Strickler, S. R., Edwards, J. D., Bombarely, A., Dunham, D. M., Martin, G. B., ...Mueller, L. A. (2014). Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins. Bmc Plant Biology, 14, 287. Mesihovic, A., Iannacone, R., Firon, N., & Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reproduction, 29(1-2), 93-105. Nelms, B., & Walbot, V. (2019). Defining the developmental program leading to meiosis in maize. Science, 364(6435), 52-56. Obenchain, V., Lawrence, M., Carey, V., Gogarten, S., Shannon, P., & Morgan, M. (2014). VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics, 30(14), 2076-2078. Omidi, M., Siahpoosh, M. R., Mamghani, R., & Modarresi, M. (2014). The Influence of Terminal Heat Stress on Meiosis Abnormalities in Pollen Mother Cells of Wheat. Cytologia, 79(1), 49-58. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T., & Delaneau, O. (2016). Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics, 32(10), 1479-1485. Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M., & Higashitani, A. (2007). Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Molecular Genetics and Genomics, 278(1), 31-42. Pacini, E., Franchi, G. G., & Hesse, M. (1985). The Tapetum - Its Form, Function, and Possible Phylogeny in Embryophyta. Plant Systematics and Evolution, 149(3-4), 155-185. Page, D. R., & Grossniklaus, L. (2002). The art and design of genetic screens: Arabidopsis thaliana. Nature Reviews Genetics, 3(2), 124-136. Parish, R. W., Phan, H. A., Iacuone, S., & Li, S. F. (2012). Tapetal development and abiotic stress: a centre of vulnerability. Functional Plant Biology, 39(7), 553-559. Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6), 130. Pecrix, Y., Rallo, G., Folzer, H., Cigna, M., Gudin, S., & Le Bris, M. (2011). Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. Journal of Experimental Botany, 62(10), 3587-3597. Peet M.M., Sato S. & Gardner R.G. (1998) Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell and Environment, 21(2), 225-231. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650-1667. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. Pressman, E., Peet, M. M., & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 90(5), 631-636. R Core Team (2017) R: a language and environment for statistical computing Rezaei, M., Arzani, A., & Sayed-Tabatabaei, B. E. (2010). Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress. Journal of Genetics, 89(4), 401-407. Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell and Environment, 23(7), 719-726. Sato, S., Tabata, S., Hirakawa, H., Asamizu, E., Shirasawa, K., Isobe, S., …Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. Scott R.J., Spielman M. & Dickinson H.G. (2004) Stamen structure and function. The Plant Cell 16, S46–S60. Shabalin, A. A. (2012). Matrix eQTL: ultra-fast eQTL analysis via large matrix operations. Bioinformatics, 28(10), 1353-1358. Sim, S. C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., …Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. Plos One, 7, e40563. Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genome-wide studies. Proceedings of the National Academy of Sciences 100(16), 9440-9445. Storey J. D., Bass A. J., Dabney A., Robinson D. (2019). qvalue: Q-value estimation for false discovery rate control. R package version 2.16.0, http://github.com/jdstorey/qvalue. Suzuki, K., Takeda, H., Tsukaguchi, T., & Egawa, Y. (2001). Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sexual Plant Reproduction, 13(6), 293-299. Taylor, J., & Butler, D. (2017). R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. Journal of Statistical Software, 79(6), 1-29. Tian, T., Liu, Y., Yan, H. Y., You, Q., Yi, X., Du, Z., …Su, Z. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45(W1), W122-W129. Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H. Y., Karlak, B., Daverman, R., …Narechania, A. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13(9), 2129-2141. Voorrips, R. E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77-78. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63. Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., …Venables, B. (2019). gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.1. Wei, T., & Simko, T. (2017). R package 'corrplot': Visualization of a Correlation Matrix (Version 0.84). Available from https://github.com/taiyun/corrplot Wu, Y. H., Bhat, P. R., Close, T. J., & Lonardi, S. (2008). Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph. Plos Genetics, 4(10), e1000212. Xu, J. M., Wolters-Arts, M., Mariani, C., Huber, H., & Rieu, I. (2017a). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213(7), 156. Xu, J. M., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G. J., & Rieu, I. (2017b). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5), 58. Zhang, J., Yang, Y., Zheng, K., Xie, M., Feng, K., Jawdy, S. S., …Muchero, W. (2018). Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. 220(2), 502-516. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214. Zhou, J., Wang, J., Yu, J. Q., & Chen, Z. X. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science, 5, 174. Zhou, R., Kjaer, K. H., Rosenqvist, E., Yu, X., Wu, Z., & Ottosen, C. O. (2017). Physiological Response to Heat Stress During Seedling and Anthesis Stage in Tomato Genotypes Differing in Heat Tolerance. Journal of Agronomy and Crop Science, 203(1), 68-80. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72844 | - |
dc.description.abstract | 為因應全球氣候變遷的挑戰,番茄耐熱育種愈發重要。然而目前對於番茄耐熱機制的了解仍然有限,導致育種效率難以提升。花粉生育力的下降是番茄遭遇高溫逆境一個主要的問題。本研究利用一個由不耐熱親本CA4與耐熱親本CLN1621L雜交的重組自交系進行花粉耐熱性相關的數量性狀基因座(QTL)定位,並搭配轉錄體定序資料的分析來推論耐熱的候選基因。試驗中,外表型調查測量了高溫逆境(日夜溫30/25°C)與常溫(日夜溫20/15°C)下,番茄的花粉活性與花粉數量兩個性狀。同時,收取1~3 mm的小花苞進行RNA定序。序列資料分析一共開發了16,788個單核甘酸分子標誌,並建構出總長1071.5 cM,且分子標誌平均距離為2.5 cM的高密度遺傳圖譜。一共定位到六個耐熱性QTLs,兩個為花粉活性與四個為花粉數量,並根據LOD計算出區間的範圍。經過後續轉錄體定序的分析,將區間內候選基因限定於兩類,包括偵測到轉錄體序列變異的基因以及認定為cis調控表現量的基因。在本研究中也特別提出兩個候選基因,分別位於第三號染色體花粉活性的QTL與第十一號染色體花粉數量的QTL,建議為優先進行功能性印證的基因。另外,本研究透過實際試驗資料的分析,展示出以數量性狀基因座定位搭配轉錄體分析以探勘候選基因的潛力。 | zh_TW |
dc.description.abstract | Global warming has been leading to the need of heat-tolerant tomato varieties. However, breeding for tomato heat tolerance is still inefficient due to limited knowledge on physiological and molecular mechanisms behind heat tolerance. Decline in pollen fertility is one of the major problem when tomatoes encounter heat stress. In this study, our goal is to identify the candidate genes of thermal tolerance for pollen traits in tomato. QTL mapping and RNA sequencing (RNA-Seq) analysis were conducted using a 78 RIL population of a cross between the heat-sensitive variety CA4 and the heat-tolerant variety CLN1621L. Pollen viability (PV) and pollen number (PN) of the RILs were evaluated under both moderate heat stress condition (30/25°C day/night) and control condition (20/15°C day/night). Meanwhile, 1-3 mm flower buds of each line were sampled for RNA-Seq library construction. A total of 16,788 SNP markers were detected from the sequence data, and were used to construct a high-density genetic map with total length of 1071.5 cM and an average spacing of 2.5 cM. Six heat tolerant QTLs were identified, two for PV and four for PN. Within the intervals of these QTLs, candidate genes of two categories were listed: genes with detectable sequence variants in their coding sequences; and differential expressed genes which were recognized as the cis-eQTL. The specific candidate genes for PV on chromosome 3 (PV03) and for PN on chromosome 11, were suggested. This work also demonstrates the power of RNA-Seq-based QTL analysis in inferring candidate genes on a moderate-size RIL population. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:07:52Z (GMT). No. of bitstreams: 1 ntu-108-R06621107-1.pdf: 31532872 bytes, checksum: aa41439255dda9f2530223d16964676f (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III ABSTRACT IV TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII INTRODUCTION 1 MATERIAL AND METHODS 6 Mapping population 6 Growth condition and heat stress treatment 7 Evaluation of pollen viability and pollen number 8 Staining of pollen mother cells with iron-acetocarmine 10 Preparation of RNA-Seq library 12 SNP calling from RNA-Seq data 12 Construction of linkage map 14 Statistical methods of QTL mapping 16 Quantification of gene expression 17 Expression QTL mapping 18 Differential expression of parental lines 20 Functional annotation of candidate genes 20 Statistical analysis and graphing 21 RESULTS 22 Changes of flower bud length at different developmental stages 22 Quality check of the RNA-Seq data and SNP calling 23 QTL mapping of pollen traits under heat stress 24 Inferring candidate genes based on RNA-Seq data 30 DISCUSSION 33 Determination of flower buds for RNA-Seq 33 Genomic structure reveals the history of tomato breeding 34 Pollen viability and total pollen number 36 QTLs of pollen-related traits 38 Investigation of candidate genes 39 CONCLUSION 42 REFERENCE 44 APPENDIX 85 | |
dc.language.iso | en | |
dc.title | 以番茄重組自交系進行數量性狀基因座定位及RNA定序資料分析探討耐熱性的候選基因 | zh_TW |
dc.title | Inferring candidate genes of tomato heat tolerance based on QTL mapping and RNA-Seq analysis of a RIL population | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃永芬,胡凱康,蔡政安,董致韡 | |
dc.subject.keyword | 番茄,花粉,耐熱性,數量性狀基因座定位,RNA測序,表現量數量性狀基因座定位, | zh_TW |
dc.subject.keyword | Tomato,Pollen,Heat tolerance,QTL mapping,RNA-Seq,eQTL mapping, | en |
dc.relation.page | 117 | |
dc.identifier.doi | 10.6342/NTU201901874 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-24 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 30.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。