Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72828
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧茂華(Mao-Hua Teng)
dc.contributor.authorTun-Hao Tsaien
dc.contributor.author蔡敦皓zh_TW
dc.date.accessioned2021-06-17T07:07:23Z-
dc.date.available2022-07-25
dc.date.copyright2019-07-25
dc.date.issued2019
dc.date.submitted2019-07-24
dc.identifier.citation[1] M. Tomita, Y. Saito, & T. Hayashi, “LaC2 encapsulated in graphite nano-particle”, Jap. J. Appl. Phys., 1993, 32, L280-282.
[2] R. S. Ruoff, D.C. Lorents, R. Malhotra & S. Subramoney, “Single crystal metals encapsulated in carbon nanoparticles”, Science, 1993, 259, 602-604.
[3] H. Wang, H. Guo, Y Dai, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, & Z. Zhang, “Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules”, Appl. Phys. Lett., 101.8 (2012)083116.
[4] A. Han, D. Li, H. Wang, X. G. Liu, J. Li, D. Y. Geng, D, & Z. D. Zhang, “Broadb& electromagnetic-wave absorption by FeCo/C nanocapsules”, Applied physics letters, 2009, 95(2), 023114.
[5] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño & C.J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine”, J. Phys. D: Appl. Phys., 2003, 36(13), R182.
[6] S. R. Chung, K. W. Wang, M. H. Teng, & T. P. Perng, “Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder”, Int. J. Hydrog. Energy., 2009, 34(3), 1383-1388.
[7] X. G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z.G. Xie & Z.D. Zhang, “(Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-b&”, Carbon, 2009, 47(2), 470-474.
[8] J. J. Host, M. H. Teng, B. R. Elliott, J. H. Hwang, T. O. Mason, D.L. Johnson, & V.P. Dravid, “Graphite encapsulated nanocrystals produced using a low carbon: metal ratio”, J. Mater. Res., 1996, 12(5), 1268-1273.
[9] C. C. Chiu, J. C. Lo, & M. H. Teng, “A novel high efficiency method for the synthesis of graphite encapsulated metal (GEM) nanoparticles”, Diam. Relat. Mater., 2012, 24, 179-183.
[10] 許舜婷(2016)“輸入微量液態碳源對合成石墨包裹奈米鎳晶粒及電弧型態轉變之研究”,碩士論文,國立臺灣大學地質科學系,共75頁。
[11] 李雱雯(2013)“以退火改善石墨包裹奈米鐵晶粒之包裹良率”,碩士論文,國立臺灣大學地質科學系,共75頁。
[12] B. R. Elliot, J.J. Host, V. P. Dravid, M. H. Teng, & J. H. Hwang, “A descriptive model linking possible formation mechanisms for graphite encapsulated nanocrystals to processing parameters”, J. Mater. Res., 1997, 12(12), 3328-3344.
[13] 黃郁傑(2018)“以電弧法合成石墨包裹鎳奈米晶粒並探討有機物熱裂解反應對產物之影響研究”,碩士論文,國立臺灣大學地質科學系,共129頁。
[14] V. P. Dravid, J. J. Host, M. H. Teng, B. E. J. Hung, D. L. Johnson, T. O. Mason, & J. R. Weertman, “Controlled-size nanocapsules”, Nature, 1995, 602.
[15] M.H. Teng, H.Y. Lin, C. C. Chiu, & Y. C. Huang, “Using liquid organic compounds to improve the encapsulation efficiency in the synthesis of graphite encapsulated metal nanoparticles by an arc-discharge method”, Diam. Relat. Mater., 2017, 80, 133-139.
[16] 鄭啟煇(2002)“用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果”,碩士論文,國立臺灣大學地質科學系,共69頁。
[17] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, & R. E. Smalley, “C60: Buckminsterfullerene”, Nature, 1985, 318(6042), 162.
[18] S. Iijima, “Helical microtubules of graphitic carbon”. nature, 1991, 354(6348), 56.
[19] A.S. Edelstein & R.C. Cammarata, “Synthesis, properties, & applications”, Nanomaterials, 1998, Boca Raton, U.S.A.: CRC Press.
[20] C. M. Lai & S. L Lee, “Novel effects & applications of nanometer materials”, Chemistry (The Chinese Chem. Soc., Taipei), 2003, 61(4), 585-597.
[21] C. Kittel, “Introduction to solid state physics (8th edition)”, U.S.A.: John Wiley & Sons, 1994.
[22] P. R. Holl&, “The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics”, Cambridge university press, 1995.
[23] R. Kubo, S. J. Miyake, & N, Hashitsume, Quantum theory of galvanomagnetic effect at extremely strong magnetic fields. In Solid State Physics, 1965, (Vol. 17, pp. 269-364). Academic Press.
[24] M. Razavy, “Quantum theory of tunneling”, World Scientific, 2003.
[25] T. P. Yadav, R. M. Yadav, & D. P. Singh, “Mechanical milling: a top-down approach foe the synthesis of nanomaterials & nanocomposites”, Nanosci. Nanotechnol., 2012, 2(3), 22-48.
[26] C. G. Granqvist & R. A. Buhrman, “Ultrafine metal nanoparticles”, J. Appl. Phys., 1976, 47 (5), 2200-2216.
[27] D. A. Porter & K.E. Easterling, “Phase transformations in metals & alloys (2nd edition)”, Boca Raton, 2004, U.S.A.: CRC press.
[28] U. Schubert & N. Hüsing, “Synthesis of inorganic materials (3rd edition). Weinheim”, Germany: Wiley-VCH, 2012.
[29] A.S . Edelstein & R. C. Cammarata, “Synthesis, properties, & applications”, Nanomaterials, 1998, Boca Raton, U.S.A.: CRC Press.
[30] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, & D.R. Huffman, “Solid C60: a new form of carbon”, Nature, 1990, 347, 354-358.
[31] S. J. Lee, J. Jung, M. K. Kim, Y. R. Kim, & J. K. Park, “Synthesis of highly stable graphite-encapsulated metal (Fe, Co, & Ni) nanoparticles”, J. Mater. Sci., 2012, 47(23), 8112-8117.
[32] J. Borysiuk, A. Grabias, J. Szczytko, M. Bystrzejewski, A. Twardowski, & H. Lange, “Structure & magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma & combustion synthesis”, Carbon, 2008, 46(13), 1693-1701.
[33] D. Ağaoğulları, S. J. Madsen, B. Ögüt, A. L. Koh, & R. Sinclair, “Synthesis & characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition”, Carbon, 2017, 124, 170-179.
[34] U. Narkiewicz, & M. Podsiadły, “Synthesis of carbon-encapsulated nickel nanoparticles”, Applied Surface Science, 2010, 256(17), 5249-5253.
[35] C. Guerret-Piecourt, Y. Lebouar, & H. Pascard, “Relation between metal electronic structure & morphology of metal compounds inside carbon nanotubes”, Nature, 1994, 372(6508), 761-765.
[36] Y. Saito, M, Okuda, T, Yoshikawa, A, Kasuya, & Y. Nishina, “Correlation between volatility of rare-earth metals & encapsulation of their carbides in carbon nanocapsules”, J. Phys. Chem., 1994, 98(27), 6696-6698.
[37] S. Seraphin, D. Zhou, J. Jiao, M.A. Minke, S. Yadav, T., & J.C. Withers, “Catalytic role of nickel, palladium, & platinum in the formation of carbon nanoclusters”, Chem. Phys. Lett., 1994, 217(3), 191-195.
[38] S. Seraphin, D. Zhou, & J. Jiao, “Filling the carbon nanocages”, J. Appl. Phys., 1996, 80(4), 2097-2104.
[39] F. Ding, A. Rosen, E. E. Campbell, L. K. Falk, & K. Bolton, “Graphitic encapsulation of catalyst particles in carbon nanotube production”, The Journal of Physical Chemistry B, 2006, 110(15), 7666-7670.
[40] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagrams, 2nd edition”, ASM International, 1990.
[41] Presl &, A. E. B., & Walker Jr, P. L., “Growth of single-crystal graphite by pyrolysis of acetylene over metals”, Carbon, 1969, 7(1), 1-8.
[42] S. M. Irving,& P. L. Walker Jr, “Interaction of evaporated carbon with heated metal substrates”, Carbon, 1967, 5(4), 399-402.
[43] T. J. Konno & R. Sinclair, “Crystallization of amorphous carbon in carbon-cobalt layered thin films”, Acta. Metall. Mater., 1995, 43(2), 471-484.
[44] 林沛彥(1999)“石墨包裹奈米晶粒材料與機械設計”,學士論文,國立臺灣大學地質科學系,共72頁。
[45] 張麗娟(1999)“石墨包裹奈米鎳晶粒的純化分離效果初步研究”,碩士論文,國立臺灣大學地質科學系,共140頁。
[46] 蕭崇毅(2006)“合成石墨包裹奈米金屬晶粒製程中熔融金屬內碳原料變化之初步研究”,碩士論文,國立臺灣大學地質科學系,共87頁。
[47] J. C. Lo, J. C. Lu, & M. H. Teng, “A new crucible design of the arc-discharge method for the synthesis of graphite encapsulated metal (GEM) nanoparticles”, Diam. Relat. Mater., 2011, 20, 330-333.
[48] M. H. Teng, S. W. Tsai, C. I. Hsiao, & Y. D. Chen, “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method”, J. Alloys Compd., 2007, 434-435, 678-681.
[49] 林春長(2002)“石墨包裹奈米鈷晶粒之純化研究”,碩士論文,國立臺灣大學地質科學系,共126頁。
[50] S.S. Lee & M.H. Teng, “Dispersion of graphite encapsulated nickel nanoparticles in a NP-9 colloidal system”, Diam. Relat. Mater., 2011, 20, 183-186.
[51] S.S. Li, C.C. Chiu, R.W. Chang, Y.H. Liou, & M.H. Teng, “Synthesis & properties of modified graphite encapsulated iron metal nanoparticles”, Diam. Relat. Mater., 2016, 63, 153-158.
[52] 羅仁傑(2010)“石墨包裹奈米鐵晶粒的合成方法改進研究:石墨坩堝設計”,碩士論文,國立臺灣大學地質科學系,共71頁。
[53] W. H. Bragg & W. L. Bragg, “The Reflexion of X-rays by Crystals”, Proc. R. Soc. Lond. A., 1913, 88(605), 428–38.
[54] B. D. Cullity & S. R. Stock, “Elements of X-ray Diffraction (3rd edition)”, New Jersey, 2001, U.S.A.: Prentice Hall.
[55] G. D. Danilatos, “Review & outline of environmental SEM at present. Journal of microscopy”, 2001, 162(3), 391-402.
[56] 邱志成(2012)“以高合成效率的製程方法合成石墨包裹奈米鐵、鈷、鎳以及銅晶粒之初步研究”,碩士論文,國立臺灣大學地質科學系,共105頁。
[57] I. Prigogine, & I. Stengers, “Order out of chaos: Man's new dialogue withnature” New York: Bantam, 1984.
[58] Y. Zhang, J. Zai, K. He, & X. Qian, “Fe3C nanoparticles encapsulated in highly crystalline porous graphite:salt-template synthesis & enhanced electrocatalytic oxygen evolution activity & stability”, Chemical Communications, 2018, 54(25), 3158-3161.
[59] 陳永得(2006)“以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果”,碩士論文,國立臺灣大學地質科學系,共88頁。
[60] B. Manoj, & A. G. Kunjomana, “Study of stacking structure of amorphous carbon by X-ray diffraction technique” Int. J. Electrochem. Sci, 7(4), 2012, 3127-3134.
[61] 林宏益(2016)“電弧法合成石墨包裹奈米鎳晶粒-使用不同含碳量之液態碳源對於包裹良率變化的研究”,碩士論文,國立臺灣大學地質科學系,共79頁。
[62] 蔡少葳(2007)“石墨包裹奈米鎳晶粒的緻密化之初步研究”,碩士論文,國立臺灣大學地質科學系,共75頁。
[63] U. Narkiewicz, M. Podsiadły, R. Jędrzejewski, & I. Pełech, “Catalytic decomposition of hydrocarbons on cobalt, nickel & iron catalysts to obtain carbon nanomaterials” Applied Catalysis A: General, 2010, 384(1-2), 27-35.
[64] 唐仁政、田榮璋(2009) “二元合金相圖及中間相晶體結構”,中南大學出版社。
[65] R. Matassa, S. Orl&ucci, E. Tamburri, V. Guglielmotti, D. Sordi, M.L. Terranova, & M. Rossi, “Characterization of carbon structures produced by graphene self‐assembly”, J. Appl. Crystallogr., 2014, 47(1), 222-227.
[66] Z. Q. Li, C. J. Lu, Z. P. Zhou, & Z. Luo, “X-ray diffraction patterns of graphite & turbostratic carbon”, Carbon, 2007, 45(8), 1686-1695.
[67] 呂睿晟(2011)“非鐵磁性石墨包裹奈米晶粒合成方法之初步研究”,碩士論文,國立臺灣大學地質科學系,共80頁。
[68] B. D. Cullity & S. R. Stock, “Elements of X-ray Diffraction (3rd edition)”, New Jersey, U.S.A.: Prentice Hall, 2001.
[69] M. A. Ermakova, D. Y. Ermakov, A. L. Chuvilin, & G. G. Kuvshinov, “Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems & the reaction conditions on the yield of carbon & morphology of carbon filaments. Journal of catalysis”, 2001 201(2), 183-197.
[70] S. Kawasumi, M. Egashira, & H. Katsuki, “Catalytic Formation of Graphite from benzene on iron powder”, J. Catal., 1981, 68(1), 237-241.
[71] M. S. Seehra, U. K. Geddam, D. Schwegler-Berry, & A. B. Stefaniak, “Detection & quantification of 2H & 3R phases in commercial graphene-based materials”, Carbon, 2015, 95, 818-823.
[72] J. Figueiredo, “Gasification of carbon deposits on catalysts & metal surfaces”, Fuel, 1986, 65(10), 1377-1382.
[73] N. V. Lemesh, S. V. Gordeichuk, A. I. Tripol’skii, T. S. Ivashchenko, & P. E. Strizhak, “Catalytic synthesis of carbon nanotubes from ethylene in the presence of water vapor”, Theoretical & Experimental Chemistry, 2006, 42(4), 234-238.
[74] J. F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, & J. B. Nagy, “Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method”, Chemical Physics Letters, 2000, 317(1-2), 83-89.
[75] H. Kathyayini, N. Nagaraju, A. Fonseca, & J. B. Nagy, “Catalytic activity of Fe, Co & Fe/Co supported on Ca & Mg oxides, hydroxides & carbonates in the synthesis of carbon nanotubes” Journal of Molecular Catalysis A: Chemical, 2004, 223(1-2), 129-136.
[76] B. Louis, G. Gulino, R. Vieira, J. Amadou, T. Dintzer, S. Galvagno, & C. Pham-Huu, “High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst” Catalysis Today, 2005, 102, 23-28.
[77] S. Takenaka, M. Serizawa, & K. Otsuka, “Formation of filamentous carbons over supported Fe catalysts through methane decomposition” Journal of Catalysis, 2004, 222(2), 520-531.
[78] S. M. Irving & P. L. Walker Jr, P. L, “Interaction of evaporated carbon with heated metal substrates” Carbon, 1967 5(4), 399-402.
[79] V. I. Zaikovskii, V. V. Chesnokov, & R. A. Buyanov, “The Relationship between the State of Active Species in a Ni/Al2O3Catalyst & the Mechanism of Growth of Filamentous Carbon”, Kinetics & catalysis, 2001, 42(6), 813-820.
[80] C. F. Wang, J. N. Wang, & Z. M. Sheng, Z. M, “Solid-phase synthesis of carbon-encapsulated magnetic nanoparticles”, The Journal of Physical Chemistry C, 2007, 111(17), 6303-6307.
[81] J. Y. Geng, H. X. Wang, & W. P. Sun, “Modeling Study on the Plasma Flow & Heat Transfer Characteristics of Low-Power Hydrogen, Helium”, Nitrogen, & Argon Arc-Heated Thrusters. IEEE Transactions on Plasma Science, 2014, 42(10), 2730-2731.
[82] Guo, Y., Okazaki, T., Kadoya, T., Suzuki, T., & &o, Y., “Spectroscopic study during single-wall carbon nanotubes production by Ar, H2, & H2–Ar DC arc discharge”, Diamond & related materials, 2005, 14(3-7), 887-890.
[83] Y. Saito, “Nanoparticles & filled nanocapsules”, Carbon, 1995, 33(7), 979-988.
[84] S. Seraphin, D. Zhou, & J. Jiao, “Filling the carbon nanocages”, Journal of applied physics, 1996, 80(4), 2097-2104.
[85] C. M. Friend, & E. L. Muetterties, “Coordination chemistry of metal surfaces. 3. Benzene & toluene interactions with nickel surfaces” Journal of the American Chemical Society, 1981, 103(4), 773-779.
[86] M. Egashira, H. Katsuki, Y. Ezaki, K. Ichiyama, T. Kamitani, & S. Kawasumi, “Catalytic Formation of Graphite by Thermal Decomposition of Some Hydrocarbons on Iron Powder”, Journal of The Japan Petroleum Institute, 1985, 28(3), 246-251.
[87] J. J. Host, “Arc synthesis & magnetic properties of graphite encapsulated nanocrystals”, thesis(Ph. D.), Northwestern University, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72828-
dc.description.abstract石墨包裹奈米金屬顆粒(graphite encapsulated metal nanoparticles, GEM)是一種具特殊核殼結構的奈米複合材料,其組成為石墨質外殼包覆內部的奈米級金屬顆粒,尺寸大約介於5到100奈米之間。由於GEM具有特殊的核殼結構,使其可同時展現石墨以及內部奈米金屬的性質,如:石墨的穩定物化性質、生物相容性、以及奈米金屬的鐵磁性、微波吸附能力等,因此GEM在很多領域的應用上皆極具潛力,如:在電子及國防工業可做為微波吸收劑,在應用地質領域可做為良好地下水示踪劑,而於醫療產業可當藥物載體或進行熱治療等。雖然GEM在許多的應用上都極具潛力,但以目前的技術仍無法將其大量生產,因此產量不足的問題也成了GEM所面臨的最大挑戰。
本團隊對於GEM的製程改善進行了多年研究,在2012年開始以液態醇類做為主要碳源,自此,GEM的產量及良率都有大幅度的提升,但使用液態形式碳源進行實驗仍具有許多的缺點,如:碳源加入時容易使實驗中斷、無法估計碳源的實際使用量、對於其合成機制不了解等,而為了改善原有碳源輸入法的問題,並深入探討其合成機制,本研究設計一種新的液態碳源合成方式-蒸氣法(vapor method),並以此法進行各種不同金屬GEM的合成。
蒸氣法成功解決了電弧容易熄滅的問題,同時保有原本方法高效率合成的優點,更使Fe-GEM的良率從以往的最高50%提升達80%以上。除此之外,藉由比較三種鐵磁性金屬(Fe, Co, Ni)在利用蒸氣法時所得的產物型態,可以發現在電弧系統中鐵磁性金屬催化非晶質碳形成石墨的能力依序為: Ni > Co >> Fe,而在比較鐵磁性金屬的催化能力後,本研究進而提出一合成假說模型,並稱其為「催化加溫循環」模型,以解釋使用蒸氣法合成Ni-GEM時產量極高的原因,此循環的提出可以作為未來新製程設計的基礎,並使產率能夠獲得大幅提升。
最後,透過比較傳統的液態碳源合成法(液滴法)與新設計蒸氣法所合成出產物的合成效率、外觀形貌、石墨殼層、以及殘留在坩堝內的金屬塊切面,成功建立出新的液態碳源模型,其較為完整的解釋了使用液態碳源合成GEM時的機制,並提出傳統的液滴法主要由「相分離機制」主導,蒸氣法則由「催化反應機制」所主導。藉由此新模型也提供了許多在前人文獻中所遇到的問題一個較合理的解釋,如:2002年鄭啟煇使用氣體碳源的高良率,以及2016年許舜婷使用微量進樣的高產率等。
zh_TW
dc.description.abstractGraphite encapsulated metal (GEM) nanoparticle is a core-shell structured nanocomposite material composed of a stable outer graphitic shell and inner nano-scaled metal core; its size is about 5 to 100 nm. Due to its core-shell structure, GEM can simultaneously exhibit the properties of both graphite and the metal core, such as the biocompatibility, ferromagnetism, and microwave adsorption ability. Therefore, GEM has huge potential for applications in various fields, such as a microwave absorbent in the electronics industry and military applications, groundwater tracer in geosciences, drug carrier in biomedical engineering, hydrogen storage in energy engineering, etc.
However, GEM has so far been unable to serve in mass production due to various difficulties in the synthesis processes, especially for the Fe-GEM. Even though our research team has significantly increased the yield of GEM by using alcohols as carbon sources in 2012, the mechanism behind the processes (conventional droplet method) is still not fully understood.
In addition, there are many disadvantages in using this method, such as the arc being prone to extinction when droplets fall into arc plasma, and it’s difficult to calculate how much carbon sources actually drop into the crucible.
To further understand the mechanism of using liquid carbon sources, a new design (vapor method) for using vapor-form carbon sources has used the synthesis of GEM. In this study, the new design method succeeds in overcoming the problems caused by employing the conventional method, and enhancing the yield of various GEMs. Futhermore, some interesting results can be observed when using vapor-form carbon sources to synthesize various GEM in a modified tungsten arc-discharge system. For example, the encapsulation efficiency of Fe-GEM can be raised from less than 50% to nearly 90%, and the production rate of Ni-GEM is twice as high as that of droplet method.
Additionally, by observing the products form of GEM, the graphite catalytic ability of ferromagnetic metal in the arc system is Ni > Co >> Fe when using the vapor method in an arc discharge system. The results also reveal the reason why Ni-GEM has an extremely high yield via the vapor method. This study further proposes a reaction hypothesis model called the 'catalytic heating cycle'. The catalytic heating cycle model can also provide the fundamental framework for a new design to greatly improve the production rate.
Finally, by means of comparing the droplet method and the vapor method, the encapsulation efficiency, morphology of the graphite shell, and the remaining metal in the crucible, we can successfully establish a new working model. It shows that the mechanism of the droplet method is dominated by the 'phase segregation', while the mechanism of vapor method is dominated by the “catalysis reaction”. The new working model can help to resolve the problems which were still not fully explained in the previous study, such as the high encapsulation efficiency by using gas carbon source (2002) and the high production rate by minor injection (2016).
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:07:23Z (GMT). No. of bitstreams: 1
ntu-108-R06224112-1.pdf: 9005271 bytes, checksum: 322602845295cd6b0a4773a2fadbda20 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
致謝 i
中文摘要 ii
Abstract iv
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1研究動機與目的 1
1.2研究方法 3
1.3本文內容 4
第二章 文獻回顧 6
2.1 奈米材料(nanomaterials) 6
2.1.1奈米材料之特殊效應及性質 7
2.1.2奈米材料的合成 10
2.2石墨包裹奈米金屬顆粒(GEM) 13
2.2.1石墨包裹奈米金屬顆粒的發現歷史 13
2.2.2石墨包裹奈米金屬顆粒的合成機制 14
2.3本研究團隊在石墨包裹奈米金屬顆粒之發展 18
2.3.1機械設計 19
2.3.2實驗流程設計 20
2.3.3陽極坩堝設計 20
2.3.4碳源的選擇 21
2.3.5產物之後處理 22
2.3.6液態碳源的合成優勢 23
第三章 實驗方法 26
3.1主要製程設備 26
3.1.1真空電弧蒸發裝置 26
3.1.2電弧系統 27
3.1.3冷卻系統 28
3.1.4電源供應系統 28
3.1.5液態碳源注入方式 29
3.2實驗流程 30
3.3分析儀器 34
第四章 實驗結果與討論 42
4.1液態碳源的選擇 43
4.2以蒸氣法合成鐵磁性金屬(Fe, Co, Ni)GEM之效率探討 44
4.3兩種碳源輸入方式合成(Fe, Co, Ni)GEM之綜合比較 52
4.3.1合成產物之TEM影像分析 52
4.3.2合成產物之X光粉末繞射分析 55
4.3.3以液態碳源合成(Fe, Co, Ni)GEM之綜合討論 61
4.4以兩種方法合成非鐵磁性金屬(Ag-GEM)之結果討論: 72
4.4.1合成Ag-GEM之流程及產物形貌探討 72
4.4.2 Ag-GEM之SEM與TEM形貌比較 75
4.4.3 Ag-GEM之XRD圖譜分析 80
4.5液態碳源合成GEM產生之氣體初步研究 82
4.5.1實驗後氣壓上升情形及氣體的採集 83
4.5.2氣相沉積質譜儀Gas Chromatography-Mass Spectrophotometer (GC-MS) 84
4.5.3四極桿質譜儀quadrupole mass spectrometer 85
4.5.4產生氣體種類對於GEM合成之影響 87
4.6實驗後之金屬原料分析 88
4.6.1 實驗後金屬原料之實體顯微鏡觀察 90
4.6.2 實驗後金屬原料之SEM影像 93
4.7建立以液態碳源合成GEM之機制 97
4.7.1液滴法(Droplet method)與蒸氣法(Vapor method)之機制建立 97
4.7.2 兩種合成機制之合成溫度及粒徑與良率之討論 98
4.7.3機制之適用性 102
第五章 結論與建議 105
本研究之結論 105
對未來研究的建議 107
參考文獻 109
附錄A 實驗數據 116
附錄B 氧化鋁坩堝升溫曲線 120
dc.language.isozh-TW
dc.subject石墨zh_TW
dc.subject奈米金屬顆粒zh_TW
dc.subject核殼結構zh_TW
dc.subject電弧法zh_TW
dc.subject苯zh_TW
dc.subjectarc dischargeen
dc.subjectgraphiteen
dc.subjectbenzeneen
dc.subjectcore-shell structureen
dc.subjectmetal nanoparticlesen
dc.title在電弧系統中以苯蒸氣碳源合成
石墨包裹奈米金屬顆粒
zh_TW
dc.titleSynthesis of graphite encapsulated metal nanoparticles in an arc-discharge system:
using benzene vapor as carbon source
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧茂英,陳燕華,王玉瑞
dc.subject.keyword石墨,奈米金屬顆粒,核殼結構,電弧法,苯,zh_TW
dc.subject.keywordgraphite,metal nanoparticles,core-shell structure,arc discharge,benzene,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201901876
dc.rights.note有償授權
dc.date.accepted2019-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
8.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved