Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72823
Title: 卷積神經網路中基於投影的維度縮減層
A Dimensionality Reduction Layer by Projection in a Convolutional Neural Network
Authors: Toshinari Morimoto
森元俊成
Advisor: 陳素雲
Keyword: 卷積神經網路,維度縮減,池化,截斷正交矩陣,投影,反向傳播演算法,
Convolutional Neural Network,Dimensionality Reduction,Pooling,Truncated Orthogonal Matrix,Projection,Backpropagation Algorithm,
Publication Year : 2019
Degree: 碩士
Abstract: 本研究提出了一個卷積神經網路中取代池化的降維方法。池化層是接在卷積層後面,並發揮維度縮減的作用。目前,最大池化或平均池化等的方法被廣泛使用,而我們提出的方法將卷積層的輸出利用截斷的正交矩陣來轉換為維度較小的矩陣。我們將該截斷的正交矩陣視為神經網路中的訓練參數,並推導反向傳播演算法中出現的相關微分。除此以外,我們實際將上述所提的方法寫為電腦程式,驗證其可行性;同時,針對上述所提的方法與池化方法,於盡量相同的條件下進行比較。在實驗中,我們的方法展現較池化方法佳的性能。
In this research, we proposed a dimensionality reduction method that takes the place of the pooling methods. A pooling layer is usually put after a convolutional layer to summarize the output images from the convolutional layer. At the moment, the max-pooling method or the average-pooling method is widely used on CNN. On the other hand, our proposed method transforms an output image from a convolutional layer into a lower-dimensional image by multiplying truncated orthogonal matrices. We regard the truncated orthogonal matrices as parameters of the neural network, and we derived the derivatives that appear in the backpropagation algorithm. Moreover, we also verified the feasibility of our proposed method by implementing it as a computer program. We compared the performance of our proposed method with the pooling methods under similar conditions. In the experiment, our proposed method achieved better performance than the pooling methods.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72823
DOI: 10.6342/NTU201901691
Fulltext Rights: 有償授權
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
528.39 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved