請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72812
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
dc.contributor.author | Jae-Deok Lee | en |
dc.contributor.author | 李在德 | zh_TW |
dc.date.accessioned | 2021-06-17T07:06:54Z | - |
dc.date.available | 2019-08-06 | |
dc.date.copyright | 2019-08-06 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-24 | |
dc.identifier.citation | Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Amer. Meteor. Soc., 80, 421-427.
——, and B. J. Etherton, 2006: Targeting and data assimilation studies during Hurricane Humberto (2001). J. Atmos. Sci., 63, 175-186. Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 1435-1445. Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 1446-1458. Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181-202. Bender, M. A., T. Marchok, C. Sampson, J. Knaff, and M. Morin, 2017: Impact of storm size on prediction of storm track and intensity using the 2016 operational GFDL hurricane model. Wea. Forecasting, 32, 1491-1508. Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151-183. Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357-374. Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322-352. Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573-1592. ——, and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion, Mon. Wea. Rev., 136, 1179-1194. Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856-864. Cha, D.-H. and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141, 964-986. Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169-1200. Chen, H., and D. L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146-162. ——, and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531-550. Cheong, H.-B., I.-H. Kwon, and T.-Y. Goo, 2004: Further study on the highorder double-Fourier-series spectral filtering on a sphere. J. Comput. Phys., 193, 180-197. ——, H.-J. Kong, H.-G. Kang, and J.-D. Lee, 2015: Fourier finite-element method with linear basis functions on a sphere: Application to Elliptic and transport equations. Mon. Wea. Rev., 143, 1275-1294. Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 1728-1743. Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783-1796. D’Asaro, E. A., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 1405-1418. DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133-1147. ——, 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076-2088. ——, C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387-398. Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306. Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 3900-3919. Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys.,9, 5587-5646. Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420-430. Ebert, E. E., and G. J. Holland, 1992: Observations of record cold cloud-top temperatures in Tropical Cyclone Hilda (1990). Mon. Wea. Rev., 120, 2240-2251. Elsberry, R. L., and M.-S. Park, 2017: Comments on ‘‘Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification.’’ Mon. Wea. Rev., 145, 1565-1571. Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585-604. ——, 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976. ——, 2018: 100 Years of Progress in Tropical Cyclone Research. Meteor. Monogr. J. Atmos. Sci., 59, 15.1-15.68. Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 2155-2175. Fischer, M. S., B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and Eastern North Pacific. Mon. Wea. Rev., 146, 1133-1155. Fovell, R. G., K. L. Corbosiero, and H.-C. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 1764-1778. ——, Y. P. Bu, K. L. Corbosiero, W.-W. Tung, Y. Cao, H.-C. Kuo, L.-H. Hsu, and H. Su, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Meteor. Monogr., 56, 11.1-11.27. Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044-2061. ——, and ——, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269. Fudeyasu, H., Ito, K., and Miyamoto Y., 2018: Characteristics of tropical cyclone rapid intensification over the Western North Pacific. J. Climate, 31, 8917-8930. Gentry, R.C., Rodgers, E., Steranka, J., and Shenk, W. E., 1980: Predicting tropical cyclone intensity using satellite-measured equivalent blackbody temperatures of cloud tops. Mon. Wea. Rev., 108, 445-455. Goerss, J. S., C. R. Sampson, and J. M. Gross, 2004: A history of western North Pacific tropical cyclone track forecast skill. Wea. Forecasting, 19, 633-638. Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700. ——, and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1565-1576. ——, and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171-1188. Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 2308-2324. ——, and ——, 2015: Idealized large-eddy simulations of a tropical cyclone-like boundary layer. J. Atmos. Sci., 72, 1743-1764. Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633-654. ——, ——, P. D. Reasor, and A. C. Didlake Jr., 2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 3617-3639. Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 2570-2584. Harnos, D. S., and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements. Geophys. Res. Lett., 38, L07805. ——, and ——, 2016: Passive Microwave Quantification of Tropical Cyclone Inner-Core Cloud Populations Relative to Subsequent Intensity Change. Mon. Wea. Rev., 144, 4461-4482. Hart, R. E., R. N. Maue, and M. C. Watson, 2007: Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135, 3990-4005. Haurwitz, B., 1935: The height of tropical cyclones and of the ‘‘eye’’ of the storm. Mon. Wea. Rev., 63, 45-49. Hazelton, A. T., Rogers, R., and R. E. Hart, 2017a: Analyzing simulated convective bursts in two Atlantic hurricanes. Part I: burst formation and development, Mon. Wea. Rev., 145, 3073-3094. ——, ——, and ——, 2017b: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity Change due to Bursts, Mon. Wea. Rev., 145, 3095-3117. Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 3243-3271. ——, B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 4066-4077. ——, W. H. Schubert, Y.-H. Chen, H.-C. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 1623-1643. Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 1310-1330. Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 2901-2922. Hodyss, D., and D. S. Nolan, 2007: Linear anelastic equations for atmospheric vortices. J. Atmos. Sci., 64, 2947-2959. Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022-1034. Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151. ——, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. ——, K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253. Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778-2800. ——, 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 1164-1176. Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898-918. Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821-851. Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287-1311. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181. Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108. ——, ——, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220-241. ——, and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374-1396. Kelley, O. A., and J. B., Halverson 2011. How much tropical cyclone intensification can result from the energy released inside of a convective burst? J. Geophys. Res., 116, D20118. Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 2469-2484. ——, and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485-2501. Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804. Kim, H. M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 1839-1849. Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper oceanic energy response to tropical cyclone passage. J. Climate, 26, 2631-2650. ——, C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799-811. Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 1459-1473. ——, and C. S. Velden, and A. J. Wimmers, 2018: A global climatology of tropical cyclone eyes. Mon. Wea. Rev., 146, 2089-2101. Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196-2209. ——, 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 2260-2270. Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of Hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030-2045. Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” precipitation. Adv. Space Res., 19, 511-514. Kwon, I.-H. and H.-B., Cheong, 2010: Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Mon. Wea. Rev., 138, 1344-1367. Lander, M. A., 1999: A tropical cyclone with an enormous central cold cover. Mon. Wea. Rev., 127, 132-136. Leroux, M.-D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 2547-2565. Lee, C.-Y., K. Michael K., Tippett, Adam H. Sobel, and Suzana J. Camargo 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun., 7, 10625. Lee, J.-D., and C.-C., Wu, 2018: The Role of Polygonal Eyewalls in Rapid Intensification of Typhoon Megi (2010). J. Atmos. Sci., 75, 4175-4199. ——, and ——, 2019: Diurnal Variation of the Convective Area and Eye Size Associated with the Rapid Intensification of Tropical Cyclones. To be submitted to Mon. Wea. Rev. Leppert, K. D., and D. J. Cecil, 2016: Tropical cyclone diurnal cycle as observed by TRMM. Mon. Wea. Rev., 144, 2793-2808. Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in Hurricanes. Bull. Amer. Meteor. Soc., 63, 1294-1301. Li, T., X. Ge, M. Peng and W. Wang, 2012: Dependence of tropical cyclone intensification on the Coriolis parameter. Trop. Cycl. Res. Rev., 1, 242-253. Li, D.-Y, and C.-Y. Huang, 2018: The influences of ocean on intensity of Typhoon Soudelor (2015) as revealed by coupled modeling. Atmos. Sci. Lett., 2018;e871. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612. Lin, I-I., C.-C., Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I. F. Pun, 2005: The interaction of supertyphoon Maemi (2003) with a warm ocean eddy, Mon. Wea. Rev.,133, 2635-2649. ——, ——, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification, Mon. Wea. Rev., 136, 3288-3306. ——, I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 3744-3757. Lynch, P., and X.-Y., Huang, 1994: Diabatic initialization using recursive filters Tellus, 46A, 583-597. ——, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655-660. Malkus, J. S., C. Ronne, and M. Chafee, 1961: Cloud patterns in Hurricane Daisy, 1958. Tellus, 13, 8-30. McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and T.-L. Hsieh, 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 3515-3534. Menelaou, K., M. K. Yau, and Y. Martinez, 2013a: Impact of asymmetric dynamical processes on the structure and intensity change of two-dimensional hurricane-like annular vortices. J. Atmos. Sci., 70, 559-582. ——, ——, and ——, 2013b: On the Origin and Impact of a Polygonal Eyewall in the Rapid Intensification of Hurricane Wilma (2005). J. Atmos. Sci., 70, 3839-3858. Merritt, E. S., and R. Wexler, 1967: Cirrus canopies in tropical storms. Mon. Wea. Rev., 95, 111-120. Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the axisymmetric spontaneous intensification of tropical cyclones. J. Atmos. Sci., 70, 112-129. ——, and ——, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 2666-2681. Molinari J. and D. Vollaro, 1989: External Influences on Hurricane Intensity. Part I Outflow Layer Eddy Angular Momentum Fluxes. J. Atmos. Sci., 46, 1093-1105. ——, S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 3593-3606. ——, S. Skubis, D. Vollaro, F. Alsheimer, and H. E. Willoughby, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55, 2632-2644. ——, and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869-3885. ——, J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 1048-1060. Monette, S. A., C. S. Velden, K. S. Griffin, and C. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 1917-1930. Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 1-32. ——, M.E. Nicholls, T.A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355-386. ——, and Coauthors, 2012: The Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153-172. ——, and R. K Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 37-66. Moon, I.-J., and S. J. Kwon, 2012: Impact of upper-ocean thermal structure on the intensity of Korean peninsula landfall typhoons. Prog. Oceanogr., 105, 61-66. Munsell, E. B., F. Zhang, J. A. Sippel, S. A. Braun, and Y. Weng, 2017: Dynamics and predictability of the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 573-595. Muramatsu, T., 1983: Diurnal variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 77-89. Nakanishi M, and Niino H., 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol. 119, 397-407. Nguyen, S. V., R. K., Smith, M. T. Montgomery, 2008. Tropical cyclone intensification and predictability in three dimensions. Q. J. R. Meteorol. Soc., 134, 563-582. Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three dimensional perturbations to balanced, Hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 2717-2745. Olander, T. L., and C. S. Velden, 2009: Tropical cyclone convection and intensity analysis using differenced infrared and water vapor imagery. Wea. Forecasting, 24, 1558-1572. Park, J.-R., H.-B. Cheong, and H.-G. Kang, 2011: High-order spectral filter for the spherical-surface limited area. Mon. Wea. Rev., 139, 1256-1278. Pauluis, O. M., and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci., 70, 3673-3688. Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805-821. Persing, J., Montgomery, M. T., McWilliams, J. and Smith R. K., 2013: Asym¬metric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. 13, 12299-341. Peirano, C. M., K. L. Corbosiero, and B. H. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, 5509-5515. Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 24, 395-419. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175. Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067-3077. Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3-22. ——, M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603-631. Richter, D. H., R., Bohac, and D. P., Stern, 2016: An assessment of the flux profile method for determining air-sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones. J. Atmos. Sci., 73, 2665-2682. Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 4149-4173. Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561. Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44-70. ——, P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970-2991. ——, ——, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536-562. Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of Hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133-147. ——, and ——, 2011: New probabilistic forecast models for the prediction of tropical cyclone rapid intensification. Wea. Forecasting, 26, 677-689. ——, D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621-2643. ——, C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 1016-1038. Sadler, J. C., 1964: Tropical cyclones of the Eastern North Pacific as revealed by TIROS observations. J. Appl. Meteor., 3, 347-366. Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314-337. Schmetz, J., S. A. Tjemkes, M. Gube, and L. Van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res., 19, 433-441. Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681-698. Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697. ——, M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197-1223. ——, C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595-605. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394. Shu, S. J., J. Ming, and P. Chi, 2012: Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Wea. Forecasting, 27, 411-423. Simpson, J., J. B. Halverson, B. S. Ferrier, W. A. Peterson, R. H. Simpson, R. Blakeslee, and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation, Meteorol. Atmos. Phys., 67, 15-35. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note-4751STR, 113 pp. Smith, R. K., Montgomery, M. T. and Nguyen, S. V., 2009: Tropical-cyclone spin up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321-1335. ——, and ——, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 2081-2086. Steranka, J., E. Rodgers, and R. Gentry, 1984: The diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 2338-2344. ——, ——, and ——, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 1539-1546. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 3335-3350. ——, J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 1405-1426. Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411. ——, 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242-264. Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239-1262. ——, and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257-278. Wang, H. and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29-48. Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 1044-1056. Weikmann, H. K., A. B. Long, and L. R. Hoxit, 1977: Some examples of rapidly growing oceanic cumulonimbus clouds. Mon. Wea. Rev., 105, 469-476. Willoughby H. E., J. A., Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima and the evolution of the Hurricane vortex. J. Atmos. Sci., 39, 395-411. Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242-264. Wu, C.-C., and H.-J. Cheng, 1999: An observational study of environmental influences on the intensity changes of Typhoons Flo (1990) and Gene (1990). Mon. Wea. Rev., 127, 3003-3031. ——, and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787-790. ——, K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 1157-1176. ——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 3806-3822. ——, W.-T. Tu, I.-F. Pun, I-I. Lin, and M. S. Peng, 2016a: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153-167. ——, S.-N. Wu, H.-H. Wei, and S. F. Abarca, 2016b: The role of convective heating in tropical cyclone eyewall ring evolution. J. Atmos. Sci., 73, 319-330. Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 1964-1983. Zhang, S., T. Li, X. Ge, M. Peng, and N. Pan, 2012: A 3DVAR based dynamical initialization scheme for tropical cyclone predictions. Wea. Forecasting, 27, 473-483. Zhang, J. A, R. F. Rogers, and V. Tallapragada 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 1413-1426. Zhu, P., K. Menelaou, and Z. Zhu, 2014: Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of Hurricanes. Quart. J. Roy. Meteor. Soc., 140, 416-438. Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature Hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836-860. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72812 | - |
dc.description.abstract | 在合適的大環境條件下,颱風的快速增強(Rapid Intensification, RI)可能經由內部動力的交互作用而發生;而這些非線性的交互作用造成預報颱風快速增強的難度。本研究使用了數值模擬與觀測資料,加以探討颱風多邊形眼牆的發展、強對流區的日夜變化與颱風中心的大小變化在颱風經歷快速增強時的角色。
在模式模擬的部分,本研究使用全物理、高階析的Advanced Research Weather Research and Forecasting (WRF)模式模擬梅姬颱風 (2010)在快速增強前後的發展。在同樣使用Mellor-Yamada-Nakanishi-Niino 3.0-level (MN3)的行星邊界層參數化方法之設定下,經由使用不同的雲微物理參數化方法WRF single-moment 6-class (WSM6)和WRF double-moment 6-class (WDM6)進行敏感性測試,颱風的強度明顯產生不同的發展。將結合WDM6與MN-3 (WDM6-MN3)的實驗與結合WSM6與MN3 (WSM6-MN3)的實驗結果相比,前者在低對流層中有較乾的環境以及較強的下衝流 (downdraft),而這兩個因素影響其初始渦漩的發展,並且限制了在特定波數下多邊形眼牆的維持,進而使WDM6-MN3實驗無法發生快速增強;相對而言,WSM6-MN3在快速增強時期,能在特定波數下維持較久的多邊形眼牆結構,並且在多邊形眼牆的頂點(vertex)具有較強的主環流與絕對角動量、較大的慣性穩定度、較大的位渦與海洋表面向上傳輸進入大氣的熱通量。 在觀測資料分析的部分,本研究使用向日葵八號衛星所觀測的影像,來探討2015至2017年西北太平洋27個曾歷快速增強的颱風中,活躍對流區域(Active Convective Area, ACA)以及颱風眼大小的日夜變化。ACA的面積通常在傍晚至深夜逐漸增加,並且在日間逐漸減少;然而,若在日間(daytime)期間,ACA在颱風的最大風速半徑(Radius of the Maximum Wind, RMW)內能維持較大的面積,將減少其下方輻射造成的冷卻過程,並使得雲層下方較暖的溫度得以維持到夜間,進一步導致雲層較高(冷)以及較低(暖)部分之間的溫差而產生不穩定性。在這樣的情形之下,將造成較活躍的對流。透過這樣的過程,颱風的強度將產生顯著的發展;本研究之分析資料顯示,巔峰強度達到三級(Category-3)或以下的颱風,可能只需經歷一次ACA的日夜變化;然而,若RMW內的ACA能維持更久的時間,則颱風的強度將發展到四級(Category-4)甚至五級(Category-5)的颱風強度,並伴隨較強的眼牆。 另外,統計資料顯示,颱風的快速增強通常發生在一個較緩慢的增強過程之後,這結果指出,颱風主環流及眼牆強度的同時增強,可能有利於之後颱風的快速增強。另一方面,一旦颱風產生了颱風眼(eye structure)的構造後,其大小將隨著ACA面積的發展而產生改變。 | zh_TW |
dc.description.abstract | The rapid intensification (RI) in tropical cyclones (TCs) likely occurs as a result of nonlinear internal interactions under favorable large-scale environments. For this reason, RI forecasts remain a great challenge. In this study, the role of polygonal eyewalls and the diurnal variation of the convective area and eye size associated with RI of TCs are investigated based on the results of numerical experiments and observational analyses.
A high-resolution numerical experiment is designed to examine the inner-core dynamics of Typhoon Megi (2010) using the Advanced Research Weather Research and Forecasting (WRF) model with full physics. From the sensitivity experiment, a significant difference in TC intensity evolution between the WRF single-moment 6-class (WSM6) and WRF double-moment 6-class (WDM6) microphysics with Mellor-Yamada-Nakanishi-Niino 3.0-level (MN3) planetary boundary layer schemes emerged since the onset of RI. Prior to RI, WDM6-MN3 exhibited relatively drier environment and stronger downdraft in the lower troposphere as compared with WSM6-MN3. These two factors can interrupt the initial development of convective cells and limit sustainability of the polygonal eyewall at a specific wavenumber in the lower troposphere. As a result, as compared with WDM6-MN3, WSM6-MN3 that exhibited a long-lasting polygonal eyewall at a specific wavenumber during the RI period shows more enhanced internal physical quantities such as the primary circulation, convective cells, inertial stability, potential vorticity, absolute angular momentum, and surface heat fluxes at each vertex of polygonal eyewalls. These differences in internal physical quantities could result in different intensity evolution. Observational analyses using Himawari-8 satellite imagery examined the diurnal variation of the active convective area (ACA) and eye size associated with 27 RI TCs selected from 2015 to 2017 in the western North Pacific. The ACA generally increases between the late afternoon and midnight, while it shrinks significantly during the day. However, if the ACA remains inside the radius of maximum wind (RMW) during the day, it could significantly reduce radiational cooling beneath that cloud area. This condition can cause a significant destabilization by the contrast between the upper and lower clouds, and thus enhancing the convective activity during the nighttime. The category-3 storm and below showed that one diurnal cycle of the ACA inside the RMW seems to enough to trigger RI. However, when the ACA is prolonged inside the RMW, storms tend to evolve into stronger TCs such as category-4 and -5 storms together with strong eyewall strength. In statistical analyses, RI tends to begin after a slow intensification stage in the tropical storm stage. It indicates that a simultaneous enhancement of primary circulation and eyewall strength of the storm could be conducive to RI. Meanwhile, once the storm forms the eye structure inside the RMW during the RI period, its size tends to change against the ACA development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:06:54Z (GMT). No. of bitstreams: 1 ntu-108-D04229001-1.pdf: 19064357 bytes, checksum: faf55e6df61bc4916b6883e2ab42f7fb (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Table of Contents
Acknowledgements i 摘要 ii Abstract iv List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 The current status of tropical cyclone (TC) forecasts 1 1.2 Large-scale environments associated with TC intensification 2 1.3 RI forecasts using statistical models 7 1.4 Internal dynamics associated with TC 10 1.4.1 Characteristics of TC boundary layer 10 1.4.2 Characteristics of convective cells 13 1.5 Satellite observations associated with TC 18 1.5.1 RI study based on satellite imagery 18 1.5.2 Diurnal variation of TC clouds 21 1.6 The scientific objectives 23 Chapter 2 Data and methodology 25 2.1 Data 25 2.2 Numerical model settings 27 2.3 Dynamical Initialization (DI) 29 2.4 IRWVln revised from the infrared window minus water vapor (IRWV) methodology using a natural logarithm 31 2.5 Definitions of the ACA, mixed-phase, and IACA 35 Chapter 3 Numerical Simulations of Typhoon Megi (2010) ─ The Role of Polygonal Eyewalls in Rapid Intensification 36 3.1 An introduction of Megi 36 3.2 Sensitivity experiments concerning PBL and microphysics schemes 38 3.3 Comparison of the vertical structure of hydrometeors between WSM6-MN3 and WDM6-MN3 41 3.4 The distribution of vertical velocities identified by contoured frequency by altitude diagrams (CFADs) 43 3.5 Characteristics of low-level polygonal eyewalls 45 3.6 Radial advection of absolute angular momentum and net radial force 49 3.7 Inertial stability and surface heat fluxes 51 3.8 The relationship between convective cells and warm-core development 52 3.9 Discussion 59 3.9.1. The role of polygonal eyewalls 59 3.9.2. The evolution of deep convective cells in the downshear side 61 3.9.3. The vertical alignment and intensification of the storm 64 3.10 Conclusions 66 Chapter 4 The Diurnal Variation of Convective Area and Eye Size Associated with the Rapid Intensification of Tropical Cyclones 68 4.1 Summary of RI TCs from 2015 to 2017 in the western North Pacific 68 4.2 The diurnal variation of the ACA in RI TCs 73 4.2.1 Category 3 or below 74 4.2.2 Category 4 TCs 77 4.2.3 Category 5 TCs 79 4.2.4 Figures for the ACA related to TC categories 81 4.3 Linear regression analysis regarding four intensity stages 82 4.4 TC eye formation and its diurnal variation 85 4.4.1. The mechanism of TC eye formation 85 4.4.2. The diurnal variation of TC eye size 88 4.5 Conclusions 90 Chapter 5 Conclusions 92 5.1 Summary 92 5.2 Future work 94 Appendix 95 Bibliography 98 | |
dc.language.iso | en | |
dc.title | 影響颱風快速增強潛在機制之探討:多邊形眼牆及強對流區與颱風大小之日變化 | zh_TW |
dc.title | Investigation of Potential Mechanisms for the Rapid Intensification of Tropical Cyclones: Polygonal Eyewalls and Diurnal Variation of the Convective Area and Eye Size | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊明仁(Ming-Jen Yang),游政谷(Cheng-Ku Yu),吳健銘(Chien-Ming Wu),廖宇慶(Yu-Chieng Liou),劉千義(Chian-Yi Liu) | |
dc.subject.keyword | 快速增強,對流爆發,低層多邊形眼牆,活躍對流區域的日夜變化,輻射冷卻造成之不穩定,眼牆強度, | zh_TW |
dc.subject.keyword | rapid intensification,convective bursts,low-level polygonal eyewalls,the diurnal variation of the active convective area,destabilization caused by radiational cooling,eyewall strength, | en |
dc.relation.page | 176 | |
dc.identifier.doi | 10.6342/NTU201800681 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 18.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。