Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7279
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李鴻源
dc.contributor.authorWei Shihen
dc.contributor.author施維zh_TW
dc.date.accessioned2021-05-19T17:40:54Z-
dc.date.available2024-08-01
dc.date.available2021-05-19T17:40:54Z-
dc.date.copyright2019-08-01
dc.date.issued2019
dc.date.submitted2019-07-29
dc.identifier.citation[1] Ahern, J. (2011). From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landscape urban planning, 100(4), 341-343.
[2] Alberti, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, C. (2003). Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. BioScience, 53(12), 1169-1179.
[3] Bellu, A., Fernandes, L. F. S., Cortes, R. M., & Pacheco, F. A. J. J. o. H. (2016). A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. 533, 567-580.
[4] Berke, P. R., & Campanella, T. J. (2006). Planning for postdisaster resiliency. The Annals of the American Academy of Political Social Science, 604(1), 192-207.
[5] Campanella, T. J. (2006). Urban resilience and the recovery of New Orleans. Journal of the American planning association, 72(2), 141-146.
[6] Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. J. G. e. c. (2008). A place-based model for understanding community resilience to natural disasters. 18(4), 598-606.
[7] Damodaram, C., Giacomoni, M. H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W., & Zechman, E. M. J. J. J. o. t. A. W. R. A. (2010). Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management 1. 46(5), 907-918.
[8] ECWA. (2018). Rain Barrels. https://www.watershedcouncil.org/rain-barrels.html.
[9] Ernstson, H., Van der Leeuw, S. E., Redman, C. L., Meffert, D. J., Davis, G., Alfsen, C., & Elmqvist, T. (2010). Urban transitions: on urban resilience and human-dominated ecosystems. Ambio, 39(8), 531-545.
[10] Giacomoni, M. H., Zechman, E. M., & Brumbelow, K. (2011). Hydrologic footprint residence: Environmentally friendly criteria for best management practices. Journal of Hydrologic Engineering, 17(1), 99-108.
[11] Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology systematics, 4(1), 1-23.
[12] Hood, M. J., Clausen, J. C., & Warner, G. S. J. J. J. o. t. A. W. R. A. (2007). Comparison of Stormwater Lag Times for Low Impact and Traditional Residential Development 1. 43(4), 1036-1046.
[13] Konrad, C. P., & Booth, D. B. (2005). Hydrologic changes in urban streams and their ecological significance. Paper presented at the American Fisheries Society Symposium.
[14] Lang, G. (2016). How do humans affect watersheds and the hydrologic cycle ? , from https://slideplayer.com/slide/8989472/
[15] MassDEP. Bioretention Areas & Rain Gardens. from http://prj.geosyntec.com/npsmanual/bioretentionareasandraingardens.aspx
[16] Meerow, S. (2016). Defining urban resilience: A review. Landscape urban planning, 147, 38-49.
[17] Ravazzani, G., Gianoli, P., Meucci, S., & Mancini, M. J. W. r. m. (2014). Assessing downstream impacts of detention basins in urbanized river basins using a distributed hydrological model. 28(4), 1033-1044.
[18] Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383-398.
[19] Saaty, T. L. (1988). What is the Analytic Hierarchy Process?, Berlin, Heidelberg.
[20] Sheng, J., & Wilson, J. P. (2009). Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Natural Hazards, 48(1), 41-57.
[21] Timmerman, P. (1981). Vulnerability, resilience and the collapse of society: a review of models and possible climatic applications: Institute for Environmental Studies, University of Toronto.
[22] Vaidya, O. S., & Kumar. (2006). Analytic hierarchy process: An overview of applications. European Journal of operational research, 169(1), 1-29.
[23] Wagner, I., & Breil, P. (2013). The role of ecohydrology in creating more resilient cities. Ecohydrology Hydrobiology, 13(2), 113-134.
[24] Wang, M., Sun, Y., & Sweetapple, C. J. J. o. e. m. (2017). Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach. 204, 31-38.
[25] Xu, T., Jia, H., Wang, Z., Mao, X., & Xu, C. (2017). SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin. Frontiers of Environmental Science & Engineering, 11(4), 1.
[26] Zhang, G., Hamlett, M., & Reed, P. (2006). Multi-objective optimization of low impact development scenarios in an urbanizing watershed. Paper presented at the Proceedings of the AWRA Annual Conference, Baltimore, Usa.
[27] 內政部不動產資訊平台. (2018). 買賣契約價格平均單價. http://pip.moi.gov.tw/V2/Default.aspx.
[28] 內政部營建署. (2002). 中和市、永和市(重新檢討)雨水下水道系統規劃報告.
[29] 內政部營建署. (2015). 水環境低衝擊開發設施操作手冊.
[30] 水利署河川海洋組. (2017). 逕流分擔與出流管制推動說明. 水利署電子報第0214期.
[31] 林士惟. (2018). 多目標基因演算法於韌性城市評估之研究. 臺灣大學土木工程學研究所學位論文, 1-99.
[32] 林子平. (2002). 都市水循環之研究—地表不透水率之調查及逕流量實測解析. 成功大學建築學系學位論文, 1-106.
[33] 香港渠務所. (2016). Sponge City: Adapting to Climate Change. from https://www.dsd.gov.hk/Documents/SustainabilityReports/1617/en/sponge_city.html
[34] 新北市政府民政局. (2019). 新北市2019年人口統計. from https://www.ca.ntpc.gov.tw/home.jsp
[35] 褚志鵬. (2009). 層級分析法 (AHP) 理論與實作. http://faculty. ndhu. edu. tw/~ chpchu/POMR_Taipei _/AHP. pdf.
[36] 鄧振源&曾國雄. (1989). 層級分析法 (AHP) 的內涵特性與應用 (上): 中國統計學報.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7279-
dc.description.abstract都市化改變城市的地貌且增加地表逕流量,排水管線的興建改變雨水的流動路徑也增加逕流速度,再加上氣候變遷所導致的極端降雨越來越頻繁,台灣都市地區發生洪水的頻率與受災程度增加,因此採取高效措施來減緩內水氾濫已成為都市雨洪管理首要的任務。低影響開發(LID)就是現代城市雨水管理的手段,傳統的LID元件藉由增加集水區的入滲及保水能力來延長集流時間,然而LID對內水的減少效率並不顯著,特別是在高重現期的狀況下。目前來說,滯洪池是減少溢淹最有效的設施,但在都市中找出最具有成本效益的滯洪池設計方案是非常困難的。本文提出以層級分析法(AHP)串聯暴雨管理模式(SWMM),以最大化的減洪量及最低的建造成本為目標,來進行都會區的滯洪池配置最佳化之研究。
研究區域為高密度開發的新北市中永和地區,降雨條件為50年重現期。以洪水深度和持續時間為指標,對所有研究區域內的氾濫節點進行評分及排序,藉此找出最佳的滯洪池數量和減洪效率,接著以此為初步方案作2種模擬情境和成本估算,最後評估不同情境下的減洪效率,來提出都市洪水緩解的規劃原則與策略。本研究結果顯示,12個滯洪池對中永和地區是最具成本效益的設計,可以減少約38%的都市內水量,在不同降雨條件下也依然能維持框架的穩健性。傳統的LID元件由於建造昂貴且減洪效率低,雖然設置滯洪池可以有效提升減洪量,但若考慮土地成本的情況下,修改管線的瓶頸段才是舒緩城市洪水最經濟的策略,而且研究指出降低洪峰流量與都市內水總量的減少並沒有直接的關聯性。最後,本研究提出的都市雨洪管理原則為:(1)修改設計錯誤的排水管線;(2)使用層級分析法找出對洪水最敏感的地方並直接放置滯洪池;(3)設計LID結構,通過增加逕流滲透的機會來協助減少洪水。
zh_TW
dc.description.abstractThe urbanization has changed the geography of a city and increased surface runoff volume. And urban storm sewer infrastructure systems alter natural storm-water flow paths and accelerate runoff velocities. Because of climate change, as extreme rainfalls becoming more frequent, as do the number of flooding more intensive in urban areas in Taiwan. Consequently, flood hazards mitigation with effective measures has become the most important task of storm water management to deal with. The low impact development (LID) is a new concept of modern urban storm water management. The general LID lengthens the time of concentration by increasing the infiltration and rainwater storage of the catchment area, but the efficiency of reduction of inner water is not obvious, especially for the high return period. As for the present, storage is the most useful and direct method for flood mitigation in heavy rainfall events. Looking for the cost-effective design scheme of storage tanks, however, is very difficult in the highly concentrated city. Thus, this paper presents the analytic hierarchy process (AHP) to find an optimal scheme for storage tanks using storm water management model (SWMM). And the goal is to minimize flooding and storage cost.
The case study was conducted in a highly concentrated region, Chung Ho and Yong He District, New Taipei City, under 50-year return period rainfall. By evaluating and ranking the flooding nodes with the AHP using two indicators (flood depth and flood duration), the optimal number of storages was obtained to have the best flood reduction efficiency. Designed two scenarios and cost estimate based on the preliminary scheme and indicated a general principle and strategy for the urban flood mitigation by comparing the performance of the plans in flood reduction efficiency. The results showed that 12 detention ponds are the highest cost-effective design with 38 percentage of flooding reduction on 50-year return period rainfall. It can still obtain the desired effects under different rainfall conditions. The general LID has the lowest benefit and his construction costs are enormous. Despite the efficiency of improving conduits are worse than placing detention ponds, it is the most appropriate strategy to slow down urban flooding if land expropriation and maintenance expenses considered. And the research has pointed out dropping peak flow may not be necessarily related to mitigating urban flooding. Finally, we present a general principle for storm water management in urban area: (1) Modify drainage networks where have incorrect design apparently. (2) Use AHP to find out where is the most sensitive to flooding and place storage tanks directly. (3) Design a few LID constructions to assist flooding reduction by increasing the chances for runoff to infiltrate.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:54Z (GMT). No. of bitstreams: 1
ntu-108-R06521301-1.pdf: 6732861 bytes, checksum: 749723a9c8d01637a30aeecf4c0d2f66 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究框架 4
第二章 文獻回顧 5
2.1 都市治水規畫 5
2.1.1都市化對水文的影響 5
2.1.2 韌性城市概念 6
2.2 低衝擊開發 7
2.2.1 傳統低衝擊開發元件 8
2.2.2 滯洪池效益 11
2.2.3 低衝擊開發最佳化研究 12
2.3 減洪指標 15
第三章 理論與研究方法 17
3.1 SWMM運算原理 17
3.1.1 降雨逕流模組 17
3.1.2 幹線輸水模組 21
3.1.3 低衝擊開發技術 26
3.1.4 模式溢淹定義 31
3.2 層級分析法 32
3.2.1 目的與基本假設 33
3.2.2 層級與要素 34
3.2.3 評估尺度 35
3.2.4 進行步驟與演算方法 36
3.3 減洪效率指標運算 37
第四章 研究區域與模式建立 38
4.1 研究區域概述 38
4.2 SWMM模式建立 42
4.2.1 雨量計(rain gage) 42
4.2.2 子集水區(subcatchment) 44
4.2.3 排水人孔(junction) 46
4.2.4 管線(conduit) 47
4.3 模擬情境介紹 48
4.3.1 傳統低衝擊開發策略 48
4.3.2 修改排水管線策略 49
第五章 模擬結果與分析 50
5.1 AHP結果分析 50
5.1.1 評估溢淹節點分數 50
5.1.2 滯洪池策略最佳化 53
5.1.3 不同降雨條件下的減洪效果 55
5.2 情境結果分析 62
5.2.1 傳統低衝擊開發策略 62
5.2.2 修改排水管線策略 63
5.2.3 小結 66
5.3 敏感度分析 68
5.4 成本分析 73
5.4.1 滯洪池 73
5.4.2 傳統低衝擊開發 74
5.4.3 修改排水管線 76
5.5 綜合討論與減洪效益分析 78
第六章 結論與建議 81
6.1 結論 81
6.2 建議 82
參考文獻 84
dc.language.isozh-TW
dc.title低衝擊開發配置對高密度都市的減洪效率之分析zh_TW
dc.titleEffect of Low Impact Development Allocation for Flood Mitigation in Highly Concentration Regionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何昊哲,葉克家
dc.subject.keyword都市減洪,最佳化配置,低衝擊開發(LID),滯洪池,層級分析法(AHP),暴雨管理模式(SWMM),zh_TW
dc.subject.keywordUrban Flood Mitigation,Optimization,Low Impact Development (LID),Storage Tanks,Analytic Hierarchy Process (AHP),SWMM,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201901982
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2024-08-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf6.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved