Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平
dc.contributor.authorLi-Yuan Hsuen
dc.contributor.author許力元zh_TW
dc.date.accessioned2021-05-19T17:40:54Z-
dc.date.available2024-07-31
dc.date.available2021-05-19T17:40:54Z-
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-29
dc.identifier.citation[1]IC Insights, “Analog IC Market Forecast With Strongest Annual Growth Through 2022,” icinsights.com, para. 1, Jan. 18, 2018. [Online]. Available: http://www.icinsights.com/data/articles/documents/1036.pdf.
[2]B. Murmann, ADC Performance Survey 1997–2018, 2018 [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html
[3] S. M. Chen and R. W. Brodersen, 'A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-
m CMOS,' in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
[4]B. P. Ginsburg and A. P. Chandrakasan, 'Dual Time-Interleaved Successive Approximation Register ADCs for an Ultra-Wideband Receiver,' in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 247-257, Feb. 2007.
[5]U-Fat Chio, He-Gong Wei, Yan Zhu, Sai-Weng Sin, Seng-Pan U and R. P. Martins, 'A self-timing switch-driving register by precharge-evaluate logic for high-speed SAR ADCs,' APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 2008, pp. 1164-1167.
[6]J. Yang, T. L. Naing and R. W. Brodersen, 'A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing,' in IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1469-1478, Aug. 2010.
[7]D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, 'A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time,' 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 314-605.
[8]M. Miyahara and A. Matsuzawa, 'A low-offset latched comparator using zero-static power dynamic offset cancellation technique,' 2009 IEEE Asian Solid-State Circuits Conference, Taipei, 2009, pp. 233-236.
[9]M. Wu, Y. Chung and H. Li, 'A 12-bit 8.47-fJ/conversion-step 1-MS/s SAR ADC using capacitor-swapping technique,' 2012 IEEE Asian Solid State Circuits Conference (A-SSCC), Kobe, 2012, pp. 157-160.
[10]H. Jeon and Y. Kim, 'A CMOS low-power low-offset and high-speed fully dynamic latched comparator,' 23rd IEEE International SOC Conference, Las Vegas, NV, 2010, pp. 285-288.
[11]S. Wong, U. Chio, Y. Zhu, S. Sin, S. U and R. P. Martins, 'A 2.3 mW 10-bit 170 MS/s Two-Step Binary-Search Assisted Time-Interleaved SAR ADC,' in IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1783-1794, Aug. 2013.
[12]C. Hou, S. Chang, H. Wu, H. Hu and E. Cun, 'An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator,' 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, 2017, pp. 1-4.
[13]B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, 'Yield and speed optimization of a latch-type voltage sense amplifier,' in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
[14]S. Pavan, N. Krishnapura, R. Pandarinathan and P. Sankar, 'A Power Optimized Continuous-Time
ADC for Audio Applications,' in IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 351-360, Feb. 2008.
[15]J. Roh, S. Byun, Y. Choi, H. Roh, Y. Kim and J. Kwon, 'A 0.9-V 60-
w 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range,' in IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 361-370, Feb. 2008.
[16]T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, Hao San and Nobukazu Takai, 'SAR ADC algorithm with redundancy,' APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 2008, pp. 268-271.
[17]T. Okazaki, D. Kanemoto, R. Pokharel, K. Yoshida and H. Kanaya, 'A design technique for a high-speed SAR ADC using non-binary search algorithm and redundancy,' 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, 2013, pp. 506-508.
[18]J. Tsai et al., 'A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching,' in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1382-1398, June 2015.
[19]S. Cho, C. Lee, Jong-Kee Kwon and S. Ryu, 'A 550µW 10b 40MS/s SAR ADC with multistep addition-only digital error correction,' IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
[20]C. Liu et al., 'A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,' 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 386-387.
[21]P. Harpe, Y. Zhang, G. Dolmans, K. Philips and H. De Groot, 'A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,' 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 472-474.
[22]C. Liu, C. Kuo and Y. Lin, 'A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
[23]J. Tsai, Y. Chen, M. Shen and P. Huang, 'A 1-V, 8b, 40MS/s, 113µW charge-recycling SAR ADC with a 14µW asynchronous controller,' 2011 Symposium on VLSI Circuits - Digest of Technical Papers, Honolulu, HI, 2011, pp. 264-265.
[24]X. Tang, L. Chen, J. Song and N. Sun, 'A 10-b 750µW 200MS/s fully dynamic single-channel SAR ADC in 40nm CMOS,' ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 413-416.
[25]G. Huang, S. Chang, Y. Lin, C. Liu and C. Huang, 'A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,' 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 2013, pp. 289-292.
[26]Y. Zhu et al., 'A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[27]R. Kapusta, J. Shen, S. Decker, H. Li, E. Ibaragi and H. Zhu, 'A 14b 80 MS/s SAR ADC With 73.6 dB SNDR in 65 nm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3059-3066, Dec. 2013.
[28]D. Janke, A. Monk, E. Swindlehurst, K. Layton and S. W. Chiang, 'A 9-Bit 10-MHz 28-
W SAR ADC Using Tapered Bit Periods and a Partially Interdigitated DAC,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 187-191, Feb. 2019.
[29]M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, 'A 10-bit Charge-Redistribution ADC Consuming 1.9
W at 1 MS/s,' in IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[30]C. K. Alexander and M. N. O. Sadiku, Fundamentals of electric circuits, 4rd ed. Boston: McGraw-Hill, 2008, pp. 275.
[31]T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, Hao San and Nobukazu Takai, 'SAR ADC algorithm with redundancy,' APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 2008, pp. 268-271.
[32]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 3rd ed. New York: Oxford University Press, 2008, pp. 444.
[33]K. Sun, G. Wang, Q. Zhang, S. Elahmadi and P. Gui, 'A 56-GS/s 8-bit Time-Interleaved ADC With ENOB and BW Enhancement Techniques in 28-nm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 821-833, March 2019.
[34]L. Kull et al., 'A 24–72-GS/s 8-b Time-Interleaved SAR ADC With 2.0–3.3-pJ/Conversion and >30 dB SNDR at Nyquist in 14-nm CMOS FinFET,' in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3508-3516, Dec. 2018.
[35]T. Ali et al., '6.4 A 180mW 56Gb/s DSP-Based Transceiver for High Density IOs in Data Center Switches in 7nm FinFET Technology,' 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 118-120.
[36]J. Hudner et al., 'A 112GB/S PAM4 Wireline Receiver Using a 64-Way Time-Interleaved SAR ADC in 16NM FinFET,' 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, 2018, pp. 47-48.
[37]C. Iorga, “Noise Coupling in Integrated Circuits: A Practical Approach to Analysis, Modeling, and Suppression.” NoiseCoupling, 2008.
[38]D. K. Su, M. J. Loinaz, S. Masui and B. A. Wooley, 'Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits,' in IEEE Journal of Solid-State Circuits, vol. 28, no. 4, pp. 420-430, April 1993.
[39]Taiwan Semiconductor Research Institute, “下線申請相關注意事項,” Taiwan Semiconductor Research Institute, 2019. [Online]. Available: https://www.tsri.org.tw. [Accessed: June 9, 2019]
[40]T. Blalack, Y. Leclercq and C. P. Yue, 'On-chip RF isolation techniques,' Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Minneapolis, MN, USA, 2002, pp. 205-211.
[41]R. Vitek, E. Gordon, S. Maerkovich and A. Beidas, 'A 0.015mm2 63fJ/conversion-step 10-bit 220MS/s SAR ADC with 1.5b/step redundancy and digital metastability correction,' Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, 2012, pp. 1-4.
[42]D. Luu et al., 'A 12b 61dB SNDR 300MS/s SAR ADC with inverter-based preamplifier and common-mode-regulation DAC in 14nm CMOS FinFET,' 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C276-C277.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7278-
dc.description.abstract本論文提出一個應用於逐漸趨近式類比至數位轉換器的電路設計技術,並且基於所提出的技術,實現一個使用九十奈米製程的單通道十位元每秒取樣二億次的非同步逐漸趨近式類比至數位轉換器。該技術為雙迴路非同步控制,其大幅降低因傳統非同步控制架構的現在,在最低有效位元階段造成時間浪費的問題,提升操作速度。
本設計使用台積電 90-nm UTM CMOS製程來實作晶片,其核心的電路面積為 192 µm × 115 µm。佈局後模擬結果顯示,此設計在0.9伏特的電壓與每秒取樣二億取樣的操作速度下,總消耗功率為1.61 mW,有效位元數為9.26 bits,每次資料轉換所消耗的能量為13fJ。預估最大DNL與INL的一個標準差分別為0.298LSB與0.35 LSB。
本次設計已於2019/07/10下線,目前正在製作階段。排定於2019/09/26晶片製作完成
zh_TW
dc.description.abstractThis thesis proposes a control architecture for successive-approximation (SAR) analog-to-digital converters (ADCs). A single-channel 10-bit 200-MS/s asynchronous SAR ADC in 90-nm CMOS process was realized based on the proposed architecture. The proposed architecture is a dual-loop asynchronous control scheme. It reduce the waste time problem in LSB steps, which result from the architectural limitation of a conventional asynchronous control. Therefore, increase the speed.
The physical design was implement in TSMC 90-nm CMOS process. The core area is 115 µm × 192 µm. From post-layout simulation, at 0.9 V supply voltage and 200-MS/s sampling rate, the total power consumption is 1.61 mW, and ENOB is 9.26 bits. The prediction of maximum 1-sigma DNL and INL are 0.298 LSB and 0.35 LSB respectively
This design is in fabrication process and was taped out at 2019/07/10。The chip out was scheduled to 2019/09/26.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:54Z (GMT). No. of bitstreams: 1
ntu-108-R03943118-1.pdf: 6318674 bytes, checksum: 506b4f1606a2d99cfcf15d8c748abdfc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter 1Introduction1
1.1Motivation1
1.2Thesis Organization4
Chapter 2Fundamentals of Analog-to-Digital Conversion5
2.1Introduction5
2.1.1Sampling5
2.1.2Quantization8
2.2Static Specifications10
2.2.1Offset Error11
2.2.2Gain error12
2.2.3Differential Non-linearity (DNL)13
2.2.4Integral Non-linearity (INL)14
2.2.5Missing code16
2.2.6Non-monotonic16
2.3Dynamic specifications17
2.3.1Signal-to-noise ratio (SNR)18
2.3.2Total harmonic distortion (THD),19
2.3.3Effective number-of-bits (ENOB)19
2.3.4Signal-to-noise and distortion ratio (SNDR)20
2.3.5Spurious-free dynamic range (SFDR)20
2.3.6Effective resolution (ER)20
2.3.7Effective resolution bandwidth (ERBW)20
Chapter 3High-Speed Design Considerations of Single-Channel SAR ADC21
3.1Introduction21
3.2Operations of SAR ADC23
3.3Settling time of capacitive-DAC25
Chapter 4A 10-Bit 200-MS/s SAR ADC31
4.1Introduction31
4.2Proposed dual-loop asynchronous control34
4.3Architecture of the proposed SAR ADC38
4.4Circuit implementation39
4.4.1Bootstrapped Switch39
4.4.2Three-stage dynamic comparator40
4.4.3Latch SAR logic41
4.4.4DAC41
4.4.5Decoder42
4.4.6Sampling clock generator42
Chapter 5Post-Layout Simulations43
Chapter 6Measurement Considerations51
6.1Noise coupling in the proposed ADC51
6.1.1Substrate noise51
6.1.2Power supply noise53
6.1.3Signal crosstalk55
6.2Design for noise coupling suppression55
6.3Chip floor plan and layout59
6.4Full-chip simulation and performance prediction61
Chapter 7Conclusions66
REFERENCES68
dc.language.isoen
dc.title一個以雙迴路非同步控制之九十奈米十位元每秒取樣二億次的逐漸趨近式類比數位轉換器zh_TW
dc.titleA 10-bit 200-MS/s SAR ADC with Dual-loop Asynchronous Control in 90nm CMOSen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張順志,鍾勇輝,趙昌博,曹恆偉
dc.subject.keyword高速,非同步控制,逐漸趨近式,類比至數位轉換器,zh_TW
dc.subject.keywordhigh-speed,asynchronous control,successive approximation,analog-to-digital converter,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201902051
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2024-07-31-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf6.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved