請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72778完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭浩明(Hao-Ming Hsiao) | |
| dc.contributor.author | Yu-Chieh Cheng | en |
| dc.contributor.author | 鄭郁潔 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:05:57Z | - |
| dc.date.available | 2024-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-25 | |
| dc.identifier.citation | [1] J. Xu, S. L. Murphy, K. D. Kochanek, B. Bastian, and E. Arias, 'Deaths: Final Data for 2016, ' National vital statistics reports, vol. 67, no. 5, pp. 1-75, 2018.
[2] E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang, S. Cheng, et al., 'Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association,' Circulation, vol. 137, no. 12, pp. e247-e269, 2018. [3] '106年國人死因統計結果,' 衛生福利部, Jun 15, 2018. [Online]. Available: https://www.mohw.gov.tw/cp-16-41794-1.html. [Accessed: May 19, 2019]. [4] 'Angioplasty and Stent Placement for the Heart,' Johns Hopkins Medicine. [Online]. Available: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/angioplasty-and-stent-placement-for-the-heart. [Accessed: May 22, 2019]. [5] 'Normal coronary angiogram (DSA): Radiology Case,' Radiopaedia Blog RSS. [Online]. Available: https://radiopaedia.org/cases/normal-coronary-angiogram-dsa. [Accessed: May 22, 2019]. [6] M. A. Christou, G. C. Siontis, D. G. Katritsis, and J. P. Ioannidis, 'Meta-Analysis of Fractional Flow Reserve Versus Quantitative Coronary Angiography and Noninvasive Imaging for Evaluation of Myocardial Ischemia,' The American Journal of Cardiology, vol. 99, no. 4, pp. 450–456, 2007. [7] W. B. Meijboom, C. A. V. Mieghem, N. V. Pelt, A. Weustink, F. Pugliese, N. R. Mollet, et al., 'Comprehensive Assessment of Coronary Artery Stenoses: Computed Tomography Coronary Angiography Versus Conventional Coronary Angiography and Correlation With Fractional Flow Reserve in Patients With Stable Angina,' Journal of the American College of Cardiology, vol. 52, no. 8, pp. 636–643, 2008. [8] N. H. Pijls, J. A. V. Son, R. L. Kirkeeide, B. D. Bruyne, and K. L. Gould, 'Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty,' Circulation, vol. 87, no. 4, pp. 1354–1367, 1993. [9] 'Fractional Flow Reserve,' Radcliffe Cardiology, Sep 4, 2018. [Online]. Available: https://www.radcliffecardiology.com/intervention/fractional-flow-reserve-ffr. [Accessed: May 21, 2019]. [10] R. Petraco, S. Sen, S. Nijjer, M. Echavarria-Pinto, J. Escaned, D. P. Francis, and J. E. Davies, 'Fractional Flow Reserve–Guided Revascularization,' JACC: Cardiovascular Interventions, vol. 6, no. 3, pp. 222–225, 2013. [11] N. H. Pijls, P. V. Schaardenburgh, G. Manoharan, E. Boersma, J. W. Bech, M. van't Veer, et al., 'Percutaneous Coronary Intervention of Functionally Nonsignificant Stenosis,' Journal of the American College of Cardiology, vol. 49, no. 21, pp. 2105–2111, 2007. [12] P. A. Tonino, B. D. Bruyne, N. H. Pijls, U. Siebert, F. Ikeno, M. van't Veer, et al., 'Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention,' New England Journal of Medicine, vol. 360, no. 3, pp. 213–224, 2009. [13] B. D. Bruyne, N. H. Pijls, B. Kalesan, E. Barbato, P. A. Tonino, Z. Piroth, et al., 'Fractional Flow Reserve–Guided PCI versus Medical Therapy in Stable Coronary Disease,' New England Journal of Medicine, vol. 367, no. 11, pp. 991–1001, 2012. [14] A. Jeremias, A. J. Kirtane, and G. W. Stone, 'A Test in Context: Fractional Flow Reserve: Accuracy, Prognostic Implications, and Limitations,' Journal of the American College of Cardiology, vol. 69, no. 22, pp. 2748–2758, 2017. [15] 'FFR: Accuracy, Prognostic Implications, and Limitations,' American College of Cardiology, Jun 1, 2017. [Online]. Available: https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2017/06/01/13/03/a-test-in-context-fractional-flow-reserve. [Accessed: May 22, 2019]. [16] S. Sen, J. Escaned, I. S. Malik, G. W. Mikhail, R. A. Foale, R. Mila, et al., 'Development and Validation of a New Adenosine-Independent Index of Stenosis Severity From Coronary Wave–Intensity Analysis,' Journal of the American College of Cardiology, vol. 59, no. 15, pp. 1392–1402, 2012. [17] 'Introduction to the iFR modality instant wave-Free Ratio,' Philips. [Online]. Available: https://www.usa.philips.com/healthcare/education-resources/technologies/igt/instant-wave-free-ratio. [Accessed: Jun 21, 2019]. [18] S. Sen, K. N. Asrress, S. Nijjer, R. Petraco, I. S. Malik, R. A. Foale, et al., 'Diagnostic Classification of the Instantaneous Wave-Free Ratio Is Equivalent to Fractional Flow Reserve and Is Not Improved With Adenosine Administration,' Journal of the American College of Cardiology, vol. 61, no. 13, pp. 1409–1420, 2013. [19] A. Jeremias, A. Maehara, P. Généreux, K. N. Asrress, C. Berry, B. D. Bruyne, et al., 'Multicenter Core Laboratory Comparison of the Instantaneous Wave-Free Ratio and Resting Pd /Pa With Fractional Flow Reserve,' Journal of the American College of Cardiology, vol. 63, no. 13, pp. 1253–1261, 2014. [20] S. Sen, Y. Ahmad, H. M. Dehbi, J. P. Howard, J. F. Iglesias, R. Al-Lamee, et al., 'Clinical Events After Deferral of LAD Revascularization Following Physiological Coronary Assessment,' Journal of the American College of Cardiology, vol. 73, no. 4, pp. 444–453, 2019. [21] J. E. Davies, S. Sen, H. M. Dehbi, R. Al-Lamee, R. Petraco, S. S. Nijjer, et al., 'Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI,' New England Journal of Medicine, vol. 376, no. 19, pp. 1824–1834, 2017. [22] M. Götberg, E. H. Christiansen, I. J. Gudmundsdottir, L. Sandhall, M. Danielewicz, L. Jakobsen, et al., 'Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI,' New England Journal of Medicine, vol. 376, no. 19, pp. 1813–1823, 2017. [23] P. D. Morris, F. N. van de Vosse, P. V. Lawford, D. R. Hose, and J. P. Gunn, ''Virtual' (Computed) Fractional Flow Reserve,' JACC: Cardiovascular Interventions, vol. 8, no. 8, pp. 1009–1017, 2015. [24] C. M. Gibson, C. P. Cannon, W. L. Daley, J. T. Dodge, B. Alexander, S. J. Marble, et al., 'TIMI Frame Count,' Circulation, vol. 93, no. 5, pp. 879–888, 1996. [25] S. Tu, E. Barbato, Z. Köszegi, J. Yang, Z. Sun, N. R. Holm, et al., 'Fractional Flow Reserve Calculation From 3-Dimensional Quantitative Coronary Angiography and TIMI Frame Count,' JACC: Cardiovascular Interventions, vol. 7, no. 7, pp. 768–777, 2014. [26] M. I. Papafaklis, T. Muramatsu, Y. Ishibashi, L. S. Lakkas, S. Nakatani, C. V. Bourantas, et al., 'Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire – fractional flow reserve,' EuroIntervention, vol. 10, no. 5, pp. 574–583, 2014. [27] B. Xu, S. Tu, S. Qiao, X. Qu, Y. Chen, J. Yang, et al., 'Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis,' Journal of the American College of Cardiology, vol. 70, no. 25, pp. 3077–3087, 2017. [28] C. A. Taylor, T. A. Fonte, and J. K. Min, 'Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve,' Journal of the American College of Cardiology, vol. 61, no. 22, pp. 2233–2241, 2013. [29] P. D. Morris, D. Ryan, A. C. Morton, R. Lycett, P. V. Lawford, D. R. Hose, et al., 'Virtual Fractional Flow Reserve From Coronary Angiography: Modeling the Significance of Coronary Lesions,' JACC: Cardiovascular Interventions, vol. 6, no. 2, pp. 149–157, 2013. [30] C. B. Lightfoot, R. J. Abraham, T. Mammen, M. Abdolell, S. Kapur, and R. J. Abraham, 'Survey of Radiologists Knowledge Regarding the Management of Severe Contrast Material–induced Allergic Reactions,' Radiology, vol. 251, no. 3, pp. 691–696, 2009. [31] M. Andreucci, R. Solomon, and A. Tasanarong, 'Side Effects of Radiographic Contrast Media: Pathogenesis, Risk Factors, and Prevention,' BioMed Research International, vol. 2014, pp. 1–20, 2014. [32] A. P. Amin, R. G. Bach, M. L. Caruso, K. F. Kennedy, and J. A. Spertus, 'Association of Variation in Contrast Volume With Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention,' JAMA Cardiology, vol. 2, no. 9, pp. 1007-1012, 2017. [33] S. Tu, J. Westra, J. Yang, C. V. Birgelen, A. Ferrara, M. Pellicano, et al., 'Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography,' JACC: Cardiovascular Interventions, vol. 9, no. 19, pp. 2024–2035, 2016. [34] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, 'Multiscale vessel enhancement filtering,' Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 Lecture Notes in Computer Science, pp. 130–137, 1998. [35] I. Cruz-Aceves, F. Oloumi, R. M. Rangayyan, J. G. Aviña-Cervantes, and A. Hernandez-Aguirre, 'Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization,' Biomedical Signal Processing and Control, vol. 25, pp. 76–85, 2016. [36] B. Obara, M. Fricker, D. Gavaghan, and V. Grau, 'Contrast-Independent Curvilinear Structure Detection in Biomedical Images,' IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2572–2581, 2012. [37] R. Su, C. Sun, C. Zhang, and T. D. Pham, 'A new method for linear feature and junction enhancement in 2D images based on morphological operation, oriented anisotropic Gaussian function and Hessian information,' Pattern Recognition, vol. 47, no. 10, pp. 3193–3208, 2014. [38] E. D. Pisano, S. Zong, B. M. Hemminger, M. Deluca, R. E. Johnston, K. Muller, et al., 'Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms,' Journal of Digital Imaging, vol. 11, no. 4, pp. 193–200, 1998. [39] C. Blondel, G. Malandain, R. Vaillant, and N. Ayache, 'Reconstruction of coronary arteries from a single rotational X-ray projection sequence,' IEEE Transactions on Medical Imaging, vol. 25, no. 5, pp. 653–663, 2006. [40] P. T. Truc, M. A. Khan, Y. K. Lee, S. Lee, and T. S. Kim, 'Vessel enhancement filter using directional filter bank,' Computer Vision and Image Understanding, vol. 113, no. 1, pp. 101–112, 2009. [41] Y. Yuan, Y. Luo, and A. C. S. Chung, 'VE-LLI-VO: Vessel Enhancement Using Local Line Integrals and Variational Optimization,' IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 1912–1924, 2011. [42] M. Shams, M. A. M. Salem, S. Hamad, and H. A. Shedeed, 'Coronary artery tree segmentation in computed tomography angiography using Otsu method,' 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 416-420, 2017. [43] J. Brieva, E. Gonzalez, F. Gonzalez, A. Bousse, and J. Bellanger, 'A Level Set Method for Vessel Segmentation in Coronary Angiography,' 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6348–6351, 2005. [44] F. Akhbardeh and H. Demirel, “Coronary Stenosis Measurements Using K-Means Clustering,” 2018 Design of Medical Devices Conference, p. V001T01A019, 2018. [45] M. E. Tenekeci, H. Pehlivan, and Y. Kaya, 'Improving performance of coronary artery segmentation using calculated vessel location from the angiogram,' Biomedical Research, vol. 29, no. 1, pp. 130-136, 2018. [46] M. Lazkani, D. R. Verma, M. Morris, and A. Pershad, ''Putting it all together': Highlighting the global approach to chronic total occlusion revascularization,' Indian Heart Journal, vol. 68, pp. 1–4, 2016. [47] 'St. Jude Medical Launches ILUMIEN III Trial,' DAIC, Aug 13, 2015. [Online]. Available: https://www.dicardiology.com/article/st-jude-medical-launches-ilumien-iii-trial. [Accessed: Jun 26, 2019]. [48] S. Tu, N. R. Holm, G. Koning, Z. Huang, and J. H. C. Reiber, 'Fusion of 3D QCA and IVUS/OCT,' The International Journal of Cardiovascular Imaging, vol. 27, no. 2, pp. 197–207, 2011. [49] L. S. Athanasiou, C. V. Bourantas, P. K. Siogkas, A. I. Sakellarios, T. P. Exarchos, K. K. Naka, et al., '3D reconstruction of coronary arteries using Frequency Domain Optical Coherence Tomography images and biplane angiography,' 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2647-2650, 2012. [50] C. Shi, X. Luo, J. Guo, Z. Najdovski, T. Fukuda, and H. Ren, 'Three-Dimensional Intravascular Reconstruction Techniques Based on Intravascular Ultrasound: A Technical Review,' IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 3, pp. 806–817, 2018. [51] C. V. Bourantas, M. I. Papafaklis, L. Athanasiou, F. G. Kalatzis, K. K. Naka, P. K. Siogkas, et al., 'A new methodology for accurate 3-dimensional coronary artery reconstruction using routine intravascular ultrasound and angiographic data: implications for widespread assessment of endothelial shear stress in humans,' EuroIntervention, vol. 9, no. 5, pp. 582–593, 2013. [52] A. Zifan, P. Liatsis, P. Kantartzis, M. Gavaises, N. Karcanias, and D. G. Katritsis, 'Automatic 3D reconstruction of coronary artery centerlines from monoplane X-ray angiogram images,' International Journal of Biological and Medical Sciences, vol. 2, no. 3, pp. 105-110, 2008. [53] A. Andriotis, A. Zifan, M. Gavaises, P. Liatsis, I. Pantos, A. Theodorakakos, et al., 'A new method of three-dimensional coronary artery reconstruction from X-ray angiography: Validation against a virtual phantom and multislice computed tomography,' Catheterization and Cardiovascular Interventions, vol. 71, no. 1, pp. 28–43, 2007. [54] C. Oueslati, S. Mabrouk, F. Ghorbel, and M. H. Bedoui, '3D Reconstruction of Coronary Arteries from Rotational X-Ray Angiography,' WSCG 2018 - Short papers proceedings, pp. 64-69, 2018. [55] S. Tu, J. Westra, J. Yang, C. V. Birgelen, A. Ferrara, and M. Pellicano, et al., 'Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography,' JACC: Cardiovascular Interventions, vol. 9, no. 19, pp. 2024–2035, 2016. [56] K. Javangula and P. Kaul, 'Hyperdominant left anterior descending artery continuing across left ventricular apex as posterior descending artery coexistent with aortic stenosis,' Journal of Cardiothoracic Surgery, vol. 2, no. 1, 2007. [57] 'Transradial Intervention of a Saphenous Vein Graft,' Cath Lab Digest, Nov 06, 2012. [Online]. Available: https://www.cathlabdigest.com/articles/Transradial-Intervention-Saphenous-Vein-Graft. [Accessed: Jun 26, 2019]. [58] C. Tomasi and R. Manduchi, 'Bilateral filtering for gray and color images,' Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), vol. 98, no. 1, pp. 839–846, 1998. [59] P. Perona and J. Malik, 'Scale-space and edge detection using anisotropic diffusion,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. [60] J. Canny, 'A Computational Approach to Edge Detection,' Readings in Computer Vision, pp. 184–203, 1987. [61] N. Otsu, 'A Threshold Selection Method from Gray-Level Histograms,' IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. [62] F. Galassi, M. Alkhalil, R. Lee, P. Martindale, R. K. Kharbanda, K. M. Channon, et al., '3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses,' Plos One, vol. 13, no. 1, pp. 1–23, 2018. [63] F. Auricchio, M. Conti, C. Ferrazzano, and G. A. Sgueglia, 'A simple framework to generate 3D patient-specific model of coronary artery bifurcation from single-plane angiographic images,' Computers in Biology and Medicine, vol. 44, pp. 97–109, 2014. [64] L. D. Angelo, P. D. Stefano, and L. Giaccari, 'A new mesh-growing algorithm for fast surface reconstruction,' Computer-Aided Design, vol. 43, no. 6, pp. 639–650, 2011. [65] N. Amenta, S. Choi, T. K. Dey, and N. Leekha, 'A simple algorithm for homeomorphic surface reconstruction,' Proceedings of the sixteenth annual symposium on Computational geometry - SCG 00, pp. 213–222, 2000. [66] 'Voronoi Diagram,' from Wolfram MathWorld. [Online]. Available: http://mathworld.wolfram.com/VoronoiDiagram.html. [Accessed: Jun 17, 2019]. [67] 'Two-manifold and non-manifold polygonal geometry,' Autodesk, May 11, 2016. [Online]. Available: https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-8E97CEF7-1CFE-4838-B4B7-59F526E21AB2-htm.html. [Accessed: Jun 17, 2019]. [68] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, 'The ball-pivoting algorithm for surface reconstruction,' IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 4, pp. 349–359, 1999. [69] H. Si, 'TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator,' ACM Transactions on Mathematical Software, vol. 41, no. 2, pp. 1–36, 2015. [70] J. D. Cutnell, K. W. Johnson, S. Stadler, and D. Young, Physics, 4th ed. Hoboken, NJ: Wiley, 2015. [71] S. Chien, S. Usami, H. M. Taylor, J. L. Lundberg, and M. I. Gregersen, 'Effects of hematocrit and plasma proteins on human blood rheology at low shear rates.,' Journal of Applied Physiology, vol. 21, no. 1, pp. 81–87, 1966. [72] Y. A. Çengel and J. M. Cimbala, Fluid mechanics: fundamentals and applications. New York, NY: Mc Graw Hill Education., 2018. [73] R. Mishra, S. Dorbala, and G. Logsetty, 'Quantitative Relation Between Hemodynamic Changes During Intravenous Adenosine Infusion and the Magnitude of Coronary Hyperemia: Implications for Myocardial Perfusion Imaging,' ACC Current Journal Review, vol. 14, no. 6, pp. 17–18, 2005. [74] G. Ciccarelli, E. Barbato, G. G. Toth, B. Gahl, P. Xaplanteris, S. Fournier, et al., 'Angiography Versus Hemodynamics to Predict the Natural History of Coronary Stenoses,' Circulation, vol. 137, no. 14, pp. 1475–1485, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72778 | - |
| dc.description.abstract | 冠狀動脈狹窄是由於動脈粥狀硬化所導致的疾病,臨床上會根據血管狹窄的程度判斷是否需執行介入性手術,但目前大部分的診斷是以外觀性的醫學影像作為觀察的依據,由於缺乏生理功能性的資訊,因此難以進行準確的評估。血流儲備分數為現今診斷心肌缺血功能的黃金指標,在最大血流的情況下,透過可量測壓力的導絲進入到冠狀動脈的病灶處,量測病灶遠端相對於近端正常血管平均壓力的比值,藉此數值描述病灶處對血管功能影響的程度,具有高度的準確性,但由於手術過程繁複且執行時須施打藥劑,因此難以順利推廣。近年來,有研究提出以三維重建血管模型與血流動力學建構的定量血流比率檢測技術,該方法不需使用壓力導絲即可透過模擬推算出虛擬的血流儲備分數,具有與血流儲備分數匹敵的準確度,且同時降低手術所需的成本、風險以及時間,對於非侵入式的功能性評估具有很高的潛力以及發展空間。
本研究建立半自動化檢測冠狀動脈定量血流比率的系統,透過圖形使用者介面手動選取血管攝影影格,並藉由整合影像分割技術提取血管的結構,接著選取感興趣的血管區段,利用投影的方式自動重建出相對應的三維網格立體模型,同時輸出病灶的外觀資訊,最後將血管模型匯入至計算流體力學模擬軟體進行血流動力學的分析,藉此計算出血管病灶處遠端相對於近端的壓力比值,以非侵入性的方式進行生理功能性的評估。 本研究使用實際進行過血管攝影的病患資料作為測試樣本,並針對模擬結果作初步的檢測。結果顯示,計算出的模擬值均符合臨床資料的主要趨勢,且系統整體的運算時間均可於4分鐘內完成,符合臨床效率的需求,可望提供醫療人員診斷冠狀動脈狹窄的輔助工具,並給予適當的治療方式。 | zh_TW |
| dc.description.abstract | Coronary artery stenosis is a disease caused by arteriosclerosis. In clinical practice, interventional surgery is performed according to the degree of vascular stenosis. However, most of the current diagnosis is based on angiographic appearance. Due to the lack of physiological and functional information, it is difficult to make an accurate assessment. Fractional flow reserve (FFR) is the gold standard for the diagnosis of myocardial ischemia. It is done through a pressure guidewire delivered to the lesion of the coronary artery to measure the ratio of mean distal coronary pressure to mean aortic pressure under hyperemic flow. FFR is a highly reliable method in assessing the functional significance of coronary stenosis. However, due to the complicated procedure and requirement of pharmacological maximal vasodilation, it is difficult to promote the use of FFR. In recent years, quantitative flow ratio (QFR) based on 3-dimensional vessel reconstructions and hemodynamic estimates has been proposed as a novel method for physiological lesion assessment. QFR is a wire-free method for computation of virtual FFR. It shows good diagnostic accuracy compared with FFR, and reduces the costs, risks and time required by surgery. There is great potential of development for using QFR as a non-invasive functional assessment of coronary lesions.
In this research, a semi-automatic system was established to detect the QFR of coronary arteries. Firstly, the frame of angiography was manually selected through the graphical user interface, and the image segmentation was applied to extract the vascular structure. Secondly, after selecting the region of interest of coronary artery, the corresponding 3-dimentional mesh model would be reconstructed automatically by projection and the lesion data were exported at the same time. Finally, the blood vessel model was imported to the computational fluid dynamics simulation software for hemodynamic analysis, so as to calculate the pressure ratio of the distal coronary pressure to the proximal coronary pressure, and evaluated the physiological function of lesion in a non-invasive way. In this research, patients who undergone coronary angiography were included as sample tests, and the simulation results were given a preliminary inspection. The results show that the calculated simulation values are in line with the main trend of clinical data, and the overall operation time of the system could be completed within 4 minutes, which significantly reduces the time and costs of surgery, and provides physicians with auxiliary tools for diagnosing coronary artery stenosis and appropriate treatment methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:05:57Z (GMT). No. of bitstreams: 1 ntu-108-R06522819-1.pdf: 3923018 bytes, checksum: 321c194c8fc396aedc524bed2765f51b (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 ii
誌謝 iii 摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1. 前言 1 1.2. 冠狀動脈血管攝影(CAG) 2 1.3. 血流儲備分數(FFR) 4 1.4. 定量血流比率(QFR) 6 1.5. 研究目的與研究內容 7 第二章 文獻探討 9 2.1. 血管影像分割 9 2.2. 血管三維建模 10 2.3. 血流動力學分析 11 第三章 血管攝影影像分割 12 3.1. 初始影像資料 12 3.1.1. 研究樣本 13 3.1.2. 影像格式 13 3.1.3. 排除條件 13 3.2. 影像增強 14 3.2.1. 平滑濾波 14 3.2.2. 形態學濾波與灰階變換函數 17 3.2.3. 多尺度血管增強濾波 18 3.3. 影像分割與後處理 21 3.3.1. Canny邊緣檢測 22 3.3.2. 大津演算法 23 3.3.3. 影像後處理 24 3.4. 血管攝影影像分割結果 24 第四章 冠狀動脈血管三維建模 28 4.1. 圖形使用者介面 28 4.2. 血管中心線與尺寸偵測 30 4.2.1. 骨架提取 30 4.2.2. 中心線校正與尺寸偵測 31 4.3. 血管三維模型重建 34 4.3.1. 中心線重建 35 4.3.2. 截面重建 37 4.3.3. 表面重建 41 4.4. 模型網格生成 43 4.5. 冠狀動脈血管三維建模結果 45 第五章 血流動力學模擬 53 5.1. 物理模型與統御方程式 53 5.1.1. 流體性質 53 5.1.2. 統御方程式 53 5.2. 血流動力學模型 54 5.2.1. 模型設定 54 5.2.2. 邊界條件 55 5.2.3. 網格劃分 56 5.2.4. 評估指標 57 5.3. 血流動力學模擬結果 58 第六章 結論與未來展望 62 6.1. 結論 62 6.2. 未來展望 63 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 血管攝影 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 血管三維建模 | zh_TW |
| dc.subject | 血流動力學 | zh_TW |
| dc.subject | 3D Reconstruction of Blood Vessels | en |
| dc.subject | Coronary Angiography | en |
| dc.subject | Image Processing | en |
| dc.subject | Cardiovascular Disease | en |
| dc.subject | Hemodynamics | en |
| dc.title | 電腦視覺與血流動力學結合應用於冠狀動脈狹窄之定量評估 | zh_TW |
| dc.title | Quantitative Assessment of Coronary Stenosis Using Combined Computer Vision and Hemodynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊士進(Shih-Chin Yang),姜廣興(Kuang-Hsing Chiang) | |
| dc.subject.keyword | 心血管疾病,血管攝影,影像處理,血管三維建模,血流動力學, | zh_TW |
| dc.subject.keyword | Cardiovascular Disease,Coronary Angiography,Image Processing,3D Reconstruction of Blood Vessels,Hemodynamics, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201901963 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
