Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭浩明
dc.contributor.authorChun-Kai Yangen
dc.contributor.author楊鈞凱zh_TW
dc.date.accessioned2021-06-17T07:05:55Z-
dc.date.available2024-07-31
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-25
dc.identifier.citation[1] W. H. O. (2018). Disease burden and mortality estimates, 2000–2016. Available: http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html (accessed on 30 April 2019).
[2] P. Amarenco, J. Bogousslavsky, L. R. Caplan, et al., 'Classification of stroke subtypes,' Cerebrovascular diseases, vol. 27, no. 5, pp. 493-501, 2009.
[3] R. L. Sacco, P. A. Wolf, W. B. Kannel, and P. M. McNamara, 'Survival and recurrence following stroke. The Framingham study,' Stroke, vol. 13, no. 3, pp. 290-295, 1982.
[4] F. I. Hsieh, L. M. Lien, S. T. Chen, et al., 'Get with the guidelines-stroke performance indicators: surveillance of stroke care in the Taiwan Stroke Registry,' Circulation, vol. 122, no. 11, pp. 1116-1123, 2010.
[5] A. M. Kaufmann, A. D. Firlik, M. B. Fukui, et al., 'Ischemic core and penumbra in human stroke,' Stroke, vol. 30, no. 1, pp. 93-99, 1999.
[6] T. P. Obrenovitch, 'The ischaemic penumbra: twenty years on,' Cerebrovascular and brain metabolism reviews, vol. 7, no. 4, pp. 297-323, 1995.
[7] J. L. Saver, 'Time is brain—quantified,' Stroke, vol. 37, no. 1, pp. 263-266, 2006.
[8] R. G. González, 'Imaging-guided acute ischemic stroke therapy: from “time is brain” to “physiology is brain”,' American Journal of Neuroradiology, vol. 27, no. 4, pp. 728-735, 2006.
[9] The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group, 'Tissue Plasminogen Activator for Acute Ischemic Stroke,' New England Journal of Medicine, vol. 333, no. 24, pp. 1581-1588, 1995.
[10] R. Bhatia, M. D. Hill, N. Shobha, et al., 'Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action,' Stroke, vol. 41, no. 10, pp. 2254-2258, 2010.
[11] G. J. del Zoppo, R. T. Higashida, A. J. Furlan, et al., 'PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke,' Stroke, vol. 29, no. 1, pp. 4-11, 1998.
[12] A. Furlan, R. Higashida, L. Wechsler, et al., 'Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial,' Jama, vol. 282, no. 21, pp. 2003-2011, 1999.
[13] S. Prabhakaran, I. Ruff, and R. A. Bernstein, 'Acute stroke intervention: a systematic review,' Jama, vol. 313, no. 14, pp. 1451-1462, 2015.
[14] O. A. Berkhemer, P. S. S. Fransen, D. Beumer, et al., 'A randomized trial of intraarterial treatment for acute ischemic stroke,' New England Journal of Medicine, vol. 372, no. 1, pp. 11-20, 2015.
[15] M. Goyal, A. M. Demchuk, B. K. Menon, et al., 'Randomized assessment of rapid endovascular treatment of ischemic stroke,' New England Journal of Medicine, vol. 372, no. 11, pp. 1019-1030, 2015.
[16] B. C. Campbell, P. J. Mitchell, T. J. Kleinig, et al., 'Endovascular therapy for ischemic stroke with perfusion-imaging selection,' New England Journal of Medicine, vol. 372, no. 11, pp. 1009-1018, 2015.
[17] J. L. Saver, M. Goyal, A. Bonafe, et al., 'Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke,' New England Journal of Medicine, vol. 372, no. 24, pp. 2285-2295, 2015.
[18] T. G. Jovin, A. Chamorro, E. Cobo, et al., 'Thrombectomy within 8 hours after symptom onset in ischemic stroke,' New England Journal of Medicine, vol. 372, no. 24, pp. 2296-2306, 2015.
[19] B. Lapergue, R. Blanc, B. Gory, et al., 'Effect of Endovascular Contact Aspiration vs Stent Retriever on Revascularization in Patients With Acute Ischemic Stroke and Large Vessel Occlusion: The ASTER Randomized Clinical Trial,' JAMA, vol. 318, no. 5, pp. 443-452, 2017.
[20] W. J. Powers, A. A. Rabinstein, T. Ackerson, et al., '2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association,' Stroke, vol. 49, no. 3, pp. e46-e99, 2018.
[21] Medtronic. Medtronic Product SOLITAIRE X. Available: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/revascularization-stroke/solitaire.html (accessed on 30 April 2019)
[22] Stryker. Stryker Product Trevo XP. Available: https://www.stryker.com/us/en/neurovascular/products/trevo--xp-provue-retriever-.html (accessed on 30 April 2019)
[23] Acandis. Acandis Product APERIO. Available: https://www.acandis.com/aperio-thrombectomy-device-32-en (accessed on 30 April 2019)
[24] DePuy Synthes. DePuy Synthes Product REVIVE PV. Available: https://www.depuysynthes.com/hcp/codman-neuro/products/qs/revive-pv (accessed on 30 April 2019)
[25] MicroVention. MicroVention Product ERIC. Available: https://www.microvention.com/chapla/product/eric (accessed on 30 April 2019)
[26] A. D. Muschenborn, K. Hearon, B. L. Volk, et al., 'Feasibility of crosslinked acrylic shape memory polymer for a thrombectomy device,' Smart Materials Research, vol. 2014, Article ID 971087, 2014.
[27] X. Gu, Y. Qi, A. Erdman, and Z. Li, 'The role of simulation in the design of a semi-enclosed tubular embolus retrieval,' Journal of medical devices, vol. 11, no. 2, p. 021001, 2017.
[28] X. Gu, Y. Qi, and A. G. Erdman, 'The Wall Apposition Evaluation for a Mechanical Embolus Retrieval Device,' Journal of healthcare engineering, vol. 2018, Article ID 9592513, 2018.
[29] T. Liebig, J. Reinartz, R. Hannes, et al., 'Comparative in vitro study of five mechanical embolectomy systems: effectiveness of clot removal and risk of distal embolization,' Neuroradiology, vol. 50, no. 1, pp. 43-52, 2008.
[30] K. Wenger, F. Nagl, M. Wagner, and J. Berkefeld, 'Improvement of stent retriever design and efficacy of mechanical thrombectomy in a flow model,' Cardiovascular and interventional radiology, vol. 36, no. 1, pp. 192-197, 2013.
[31] P. Machi, F. Jourdan, D. Ambard, et al., 'Experimental evaluation of stent retrievers’ mechanical properties and effectiveness,' Journal of neurointerventional surgery, vol. 9, no. 3, pp. 257-263, 2017.
[32] N. Kaneko, Y. Komuro, H. Yokota, and S. Tateshima, 'Stent retrievers with segmented design improve the efficacy of thrombectomy in tortuous vessels,' Journal of neurointerventional surgery, vol. 11, no. 2, pp. 119-122, 2019.
[33] H. M. Hsiao, Y. H. Chiu, K. H. Lee, and C. H. Lin, 'Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior,' Computer-Aided Design, vol. 44, no. 8, pp. 757-765, 2012.
[34] H. M. Hsiao, K. H. Lee, Y. C. Liao, and Y. C. Cheng, 'Cardiovascular stent design and wall shear stress distribution in coronary stented arteries,' Micro & Nano Letters, vol. 7, no. 5, pp. 430-433, 2012.
[35] G. A. Sicard, 'Rutherford's Vascular Surgery and Endovascular Therapy,' Journal of Vascular Surgery, vol. 68, no. 5, pp. 1611-1612, 2018.
[36] B. Peters, P. Ewert, and F. Berger, 'The role of stents in the treatment of congenital heart disease: Current status and future perspectives,' Annals of pediatric cardiology, vol. 2, no. 1, pp. 3-23, 2009.
[37] R. du Mesnil de Rochemont, B. Yan, F. E. Zanella, et al., 'Conformability of balloon-expandable stents to the carotid siphon: an in vitro study,' American journal of neuroradiology, vol. 27, no. 2, pp. 324-326, 2006.
[38] N. Ebrahimi, B. Claus, C. Y. Lee, et al., 'Stent conformity in curved vascular models with simulated aneurysm necks using flat-panel CT: an in vitro study,' American Journal of Neuroradiology, vol. 28, no. 5, pp. 823-829, 2007.
[39] 柯俊誼, '鎳鈦合金於植入式醫療器材上的多種應用,' 2016.
[40] 陳貽和, '電化學陽極溶解反應模型研究,' 2013.
[41] T. Hahn and A. Marder, 'Effect of electropolishing variables on the current density-voltage relationship,' Metallography, vol. 21, no. 4, pp. 365-375, 1988.
[42] C. L. Chu, R. M. Wang, T. Hu, et al., 'Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys,' Materials Science and Engineering: C, vol. 28, no. 8, pp. 1430-1434, 2008.
[43] Á. Lengyel, P. Nagy, E. Bognár, and K. Hirschberg, 'Development of Nitinol stents: electropolishing experiments,' Materials Science Forum, vol. 729, pp. 436-441,2013.
[44] Fort Wayne Metals. Soldering Nitinol: Determining the best flux / solder combination. Available: https://www.fwmetals.com/services/resource-library/ (Accessed on 30 April, 2019)
[45] R. Torii, M. Oshima, T. Kobayashi, et al., 'Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling,' Computational Mechanics, vol. 43, no. 1, pp. 151-159, 2008.
[46] T. Mashiko, K. Otani, R. Kawano, et al., 'Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping,' World neurosurgery, vol. 83, no. 3, pp. 351-361, 2015.
[47] T. Mashiko, T. Konno, N. Kaneko, and E. Watanabe, 'Training in brain retraction using a self-made three-dimensional model,' World neurosurgery, vol. 84, no. 2, pp. 585-590, 2015.
[48] E. J. McCullough and V. K. Yadavalli, 'Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices,' Journal of Materials Processing Technology, vol. 213, no. 6, pp. 947-954, 2013.
[49] J. Y. Chueh, A. K. Wakhloo, G. H. Hendricks, et al., 'Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs,' American Journal of Neuroradiology, vol. 32, no. 7, pp. 1237-1244, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72777-
dc.description.abstract急性缺血性腦中風的成因為腦血管受急性血栓阻塞而影響血流,導致患者殘障或死亡。近年來,針對急性血栓的治療,機械取栓方法逐漸普及,其中一種機械取栓的治療方法為鎳鈦合金自動擴張式支架所構成的血栓取出器。目前市面上已經有數款血栓取出器產品,但難以明確指出不同的幾何形狀設計及其機械性質對於取栓效果的影響,本研究將針對血栓取出器設計對取栓效果的影響進行研究。
本研究藉由參數化設計定義血栓取出器的幾何結構,以設計參數crown數與ring數作為控制變因提出6款設計。建立有限元素模型觀察機械性質並確認製造可行性後,便能進行雛型品製造。最後由體外取栓實驗驗證血栓取出器雛型品的取栓效果,分別於直管血管、彎管血管進行5次定量實驗以及25次定性實驗,並與有限元素分析結果進行比較。
結果顯示,有效工作長度、幾何形狀表面起伏與徑向強度對取栓效果的影響皆不明顯。在直管血管實驗中,設計參數ring數影響血栓斷裂或血栓脫落的發生,而對血管壁的貼合程度則影響血栓碎屑與液體殘留的出現;在彎管血管方面,血栓取出器於彎曲處的展開程度是主要影響血栓斷裂與血栓脫落的因素。透過本研究建立的血栓取出器系統性研究方法,成功找到設計參數對取栓效果的影響,希望能提供血栓取出器新的開發方向。
zh_TW
dc.description.abstractAcute ischemic stroke, usually caused by sudden blood clot formation, could lead to fatal blockage in arteries with high mortality and morbidity. In recent times the mechanical thrombectomy devices have become increasingly involved in blood clot removal. The blood clot retriever, one kind of thrombectomy devices, is a nitinol self-expanding stent used to retrieve the blood clot. Currently, there are several kinds of blood clot retriever products on the market, but the designs of blood clot retrievers are not studied systematically. This research aims to evaluate the performance of blood clot retriever designs.
In this research, parametric design methodology was used in device design. Crown number and ring number, two of the design parameters, were treated as control variables and achieved six blood clot retriever design patterns. Finite element models were developed to analyze the mechanical behavior and the manufacturing feasibility of the devices. Then, the prototypes of blood clot retrievers would be produced. Finally, the in-vitro experiments were conducted to verify the effectiveness of these blood clot retrievers. Twenty-five quantitative experiments and five qualitative experiments were conducted with six blood clot retrievers in each of straight vessel and tortuous vessel. The in-vitro experiments results would be compared with finite element analysis results.
Results show that the effects of working length, radial stiffness, and deformation on effectiveness of blood clot retrievers are not obvious. In the straight vessel experiment, the ring number of design parameters affects the occurrence of clot disengagement and fragmentation, and the malapposition of blood clot retriever affects micro-fragmentation and blood residue. In the tortuous vessel experiment, the conformability of blood clot retriever is the crucial factor of effectiveness. In this research, a systematic study method for blood clot retriever was proposed, and the relationship between design parameters and effectiveness of blood clot retrievers were established. It is hoped that this research could provide a new direction for blood clot retriever development.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:05:55Z (GMT). No. of bitstreams: 1
ntu-108-R06522814-1.pdf: 10836226 bytes, checksum: 0d1a894260d7d30aeb4f78eeda54204d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1. 前言 1
1.2. 缺血性腦中風及治療方法 2
1.3. 機械取栓 4
1.4. 血栓取出器文獻探討 5
1.4.1. 現行血栓取出器設計 5
1.4.2. 血栓取出器有限元素分析 7
1.4.3. 血栓取出器體外實驗 8
1.5. 研究動機與目的 9
1.6. 研究內容 10
第二章 血栓取出器設計 11
2.1. 血栓取出器設計概念 11
2.2. 參數化設計 13
第三章 血栓取出器有限元素分析 16
3.1. 血栓取出器有限元素模型設定 16
3.1.1. 模型網格劃分 16
3.1.2. 鎳鈦合金性質介紹與設定 19
3.2. 血栓取出器製程模擬 21
3.2.1. 血栓取出器製程模擬設定 21
3.2.2. 觀察指標 23
3.2.3. 血栓取出器製程模擬結果 24
3.3. 血栓取出器部署模擬 30
3.3.1. 血栓取出器部署模擬設定 30
3.3.2. 觀察指標 34
3.3.3. 血栓取出器部署模擬結果 35
第四章 血栓取出器製造 41
4.1. 雷射切削加工 42
4.2. 熱處理定型 46
4.3. 表面處理 47
4.3.1. 噴砂處理 47
4.3.2. 拋光處理 48
4.4. 鎳鈦合金焊接 52
4.5. 血栓取出器雛型品展示 55
第五章 體外取栓實驗 57
5.1. 體外實驗模型 57
5.1.1. 血管模型製作 57
5.1.2. 血栓製作 63
5.1.3. 導管器材 64
5.2. 體外取栓實驗方法 65
5.2.1. 定量實驗 66
5.2.2. 定性實驗 67
5.3. 體外取栓實驗結果 68
5.3.1. 定量實驗結果 69
5.3.2. 定性實驗結果 71
5.3.3. 體外取栓實驗結果討論 72
第六章 綜合結果分析 75
6.1. 設計與模擬對直管血管取栓效果影響 76
6.2. 設計與模擬對彎管血管取栓效果影響 78
6.3. 綜合結果整理 80
第七章 結論與未來展望 82
參考文獻 84
dc.language.isozh-TW
dc.subject機械取栓zh_TW
dc.subject鎳鈦合金zh_TW
dc.subject急性缺血性腦中風zh_TW
dc.subject有限元素分析zh_TW
dc.subject體外實驗zh_TW
dc.subject血栓取出器zh_TW
dc.subjectFinite element analysisen
dc.subjectNitinolen
dc.subjectAcute ischemic strokeen
dc.subjectBlood clot retrieveren
dc.subjectIn-vitro experimenten
dc.subjectThrombectomyen
dc.title血栓取出器之設計與體外實驗驗證zh_TW
dc.titleDesign and In-vitro Experiment of Blood Clot Retrieveren
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee姜廣興,楊士進
dc.subject.keyword機械取栓,鎳鈦合金,血栓取出器,有限元素分析,體外實驗,急性缺血性腦中風,zh_TW
dc.subject.keywordThrombectomy,Nitinol,Blood clot retriever,Finite element analysis,In-vitro experiment,Acute ischemic stroke,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201901911
dc.rights.note有償授權
dc.date.accepted2019-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
10.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved