請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Cheng-Yang Chiu | en |
| dc.contributor.author | 邱正洋 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:05:09Z | - |
| dc.date.available | 2021-07-31 | |
| dc.date.copyright | 2019-07-31 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-26 | |
| dc.identifier.citation | [1] S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, 'A review of dielectric optical metasurfaces for wavefront control,' Nanophotonics, vol. 7, no. 6, pp. 1041-1068, 2018.
[2] H. T. Chen, A. J. Taylor, and N. Yu, 'A review of metasurfaces: physics and applications,' Rep Prog Phys, vol. 79, no. 7, p. 076401, Jul 2016. [3] P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, 'Recent advances in planar optics: from plasmonic to dielectric metasurfaces,' Optica, vol. 4, no. 1, 2017. [4] Y. Zhou et al., 'High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 5, pp. 1485-1499, 2009. [5] C. J. Chang-Hasnain and W. Yang, 'High-contrast gratings for integrated optoelectronics,' Advances in Optics and Photonics, vol. 4, no. 3, 2012. [6] R. W. Wood, 'On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,' Proceedings of the Physical Society of London, vol. 18, no. 1, pp. 269-275, 1902/06 1902. [7] A. Hessel and A. A. Oliner, 'A New Theory of Wood’s Anomalies on Optical Gratings,' Applied Optics, vol. 4, no. 10, pp. 1275-1297, 1965/10/01 1965. [8] M. Neviere, R. Petit, and M. Cadilhac, 'About the theory of optical grating coupler-waveguide systems,' Optics Communications, vol. 8, no. 2, pp. 113-117, 1973/06/01/ 1973. [9] M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, 'Systematic study of resonances of holographic thin film couplers,' Optics Communications, vol. 9, no. 1, pp. 48-53, 1973/09/01/ 1973. [10] M. Gale, 'Diffraction, beauty and commerce,' Physics World, vol. 2, no. 10, pp. 24-29, 1989/10 1989. [11] S. S. Wang and R. Magnusson, 'Theory and applications of guided-mode resonance filters,' Applied Optics, vol. 32, no. 14, pp. 2606-2613, 1993/05/10 1993. [12] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, 'Guided-mode resonances in planar dielectric-layer diffraction gratings,' Journal of the Optical Society of America A, vol. 7, no. 8, pp. 1470-1474, 1990/08/01 1990. [13] C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, 'Ultrabroadband mirror using low-index cladded subwavelength grating,' IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 518-520, 2004. [14] C. F. R. Mateus, M. C. Y. Huang, C. Lu, C. J. Chang-Hasnain, and Y. Suzuki, 'Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,' IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1676-1678, 2004. [15] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, 'A surface-emitting laser incorporating a high-index-contrast subwavelength grating,' Nature Photonics, vol. 1, p. 119, 02/01/online 2007. [16] Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, 'Large Fabrication Tolerance for VCSELs Using High-Contrast Grating,' IEEE Photonics Technology Letters, vol. 20, no. 6, pp. 434-436, 2008. [17] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, 'A nanoelectromechanical tunable laser,' Nature Photonics, vol. 2, p. 180, 02/24/online 2008. [18] C. Chase, Y. Zhou, and C. J. Chang-Hasnain, 'Size effect of high contrast gratings in VCSELs,' Optics Express, vol. 17, no. 26, pp. 24002-24007, 2009/12/21 2009. [19] C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, 'High-Contrast Grating VCSELs,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 869-878, 2009. [20] W. Hofmann et al., 'Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,' IEEE Photonics Journal, vol. 2, no. 3, pp. 415-422, 2010. [21] P. Gilet et al., High-index-contrast subwavelength grating VCSEL (SPIE OPTO). SPIE, 2010, p. 8. [22] I.-S. M. Chung, Jesper; Gilet, P.;Chelnokov, A., 'Subwavelength Grating-Mirror VCSEL With a Thin Oxide Gap,' IEEE Photonics Technology Letters, vol. 20, pp. 105-107, 2008. [23] Y. M. Rao et al., 'Continuous tunable 1550-nm high contrast grating VCSEL,' 2012 Conference on Lasers and Electro-Optics (CLEO), pp. 1-2, 2012 2012. [24] C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, '1550 nm high contrast grating VCSEL,' Optics Express, vol. 18, no. 15, pp. 15461-15466, 2010/07/19 2010. [25] P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, 'Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 1, pp. 107-116, 2005. [26] J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, 'Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,' IEEE Photonics Technology Letters, vol. 17, no. 8, pp. 1593-1595, 2005. [27] M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, 'Polarization Mode Control in High Contrast Subwavelength Grating VCSEL,' in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, San Jose, California, 2008, p. CMGG5: Optical Society of America. [28] F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, 'Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,' Optics Express, vol. 18, no. 12, pp. 12606-12614, 2010/06/07 2010. [29] D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, 'Flat dielectric grating reflectors with focusing abilities,' Nature Photonics, vol. 4, no. 7, pp. 466-470, 2010. [30] D. Fattal et al., 'A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,' Nature, vol. 495, p. 348, 03/20/online 2013. [31] L. Carletti, R. Malureanu, J. Mørk, and I.-S. Chung, 'High-index-contrast grating reflector with beam steering ability for the transmitted beam,' Optics Express, vol. 19, no. 23, pp. 23567-23572, 2011/11/07 2011. [32] Q. Zhang, M. Li, T. Liao, and X. Cui, 'Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,' Optics Communications, vol. 411, pp. 93-100, 2018/03/15/ 2018. [33] N. Holliman, '3-D Display Systems,' Department of Computer Science, University of Durham, 2005. [34] 'How 3-D Glasses Work' Available: https://science.howstuffworks.com/3-d-glasses2.htm [35] M. Sykora, J. Schultz, and R. Brott, Optical characterization of autostereoscopic 3D displays (IS&T/SPIE Electronic Imaging). SPIE, 2011, p. 8. [36] . Image Credit: Cmglee at Wikimedia Commons. Available: http://en.wikipedia.org/wiki/File:Parallax_barrier_vs_lenticular_screen.svg [37] C.-Y. Chen, Q.-L. Deng, and H.-C. Wu, 'A high-brightness diffractive stereoscopic display technology,' Displays, vol. 31, no. 4, pp. 169-174, 2010/12/01/ 2010. [38] C. Chen, Q. Deng, B. Lin, and W. Hung, 'Quartz-Blazed Grating Applied on Autostereoscopic Display,' Journal of Display Technology, vol. 8, no. 8, pp. 433-438, 2012. [39] 'Light Spectra for the iPhone 7 and iPhone 6 ', Available: http://www.displaymate.com/ [40] Y.-J. Wang, S.-H. Ouyang, W.-C. Chao, J.-G. Lu, and H.-P. D. Shieh, 'High directional backlight using an integrated light guide plate,' Optics Express, vol. 23, no. 2, pp. 1567-1575, 2015/01/26 2015. [41] . Image Credit: Dicklyon at English Wikipedia. Available: https://commons.wikimedia.org/wiki/File:Luminosity.png [42] A. Yuuki, S. Uehara, G. H. K. Taira, T. N. K. Izumi, K., A. M. Mashitani, T. Koike, and H. U. T. Horikoshi, 'Viewing Zones of Autostereoscopic Displays and their Measurement Methods,' Proceedings of the 15th International Display Workshops, pp. 1111-1114, 2008. [43] A. Yuuki et al., 'Influence of 3-D cross-talk on qualified viewing spaces in two- and multi-view autostereoscopic displays,' Journal of the Society for Information Display, vol. 18, no. 7, pp. 483-493, 2010/07/01 2010. [44] H. Yamamoto et al., 'Enlargement of viewing area of stereoscopic full-color LED display by use of a parallax barrier,' Applied Optics, vol. 41, no. 32, pp. 6907-6919, 2002/11/11 2002. [45] H. Yamamoto, T. Kimura, S. Matsumoto, and S. Suyama, 'Viewing-Zone Control of Light-Emitting Diode Panel for Stereoscopic Display and Multiple Viewing Distances,' Journal of Display Technology, vol. 6, no. 9, pp. 359-366, 2010. [46] T. Järvenpää and M. Salmimaa, 'Optical characterization of autostereoscopic 3-D displays,' Journal of the Society for Information Display, vol. 16, no. 8, pp. 825-833, 2008/08/01 2008. [47] P. Boher, T. Leroux, T. Bignon, V. Collomb-Patton, and D. Glinel, Characterization of auto-stereoscopic 3D displays using Fourier optics instrument. 2009. [48] T. Järvenpää, M. Salmimaa, and T. Levola, 'Objective evaluation of qualified viewing spaces for near-to-eye and autostereoscopic two-view displays,' Journal of the Society for Information Display, vol. 19, no. 2, pp. 230-237, 2011/02/01 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72748 | - |
| dc.description.abstract | 裸眼立體顯示器是立體顯示技術中的一個分支,其不需要配戴眼鏡的優勢提 供了更廣泛的運用場景,然而市面上的兩種主流技術:視差屏障式(parallax barrier)與柱狀透鏡陣列式(lenticular)各自有著如低出光效率或高交互干擾且體積大等問題存在。2010 年,Chen等人提出利用以布拉茲光柵層為基礎的繞射式光學元件,有著高出光效率與輕量化等優勢,但因繞射元件存在色散效應會降低影像品質,雖然後續以三種不同週期的布拉茲光柵層作為解決方案,卻也同時提高了製程難度。
本論文以有限元素分析軟體模擬單層平面的次波長高折射率差光柵層作為液 晶架構下的奇偶次畫素分光結構,透過改變矩形介電質(TiO2 on glass substrates)的結構參數來操控入射光之相位,不僅可以精準的控制出光方向,同時因為其次波長的週期,只存在零階繞射,可以有效的避免其他繞射階造成的交互干擾。本研究也驗證了相較於主波長,光柵波長色散效應不會對影像品質造成影響,並證實此結構在臨界的背光源角度半高全寬為7度時,能夠創造觀賞者與螢幕距離間高達15cm符合交互干擾標準的自由移動範圍。 | zh_TW |
| dc.description.abstract | The autostereoscopic (AS3D) display is a promising research topic in 3D display technology due to the advantage of providing 3D perception to the viewer without needing to wear special viewing gear. However, among two mainstream AS3D systems, specifically parallax barrier method and lenticular method, some drawbacks are inevitable, such as lack of power efficiency for the parallax barrier method, and image cross-talk with bulky components for lenticular method. In 2010, Chen et al. proposed a revised method by replacing the optical components adhered in front of the display to diffractive blazed gratings, which are more power-efficient and compact. Still, it remains some challenges in the mass-production process.
During the past few decades, the advances and the wider accessibility of nanofabrication technologies, dielectric high-index-contrast gratings (HCGs) have caused a surge with its’ outstanding optical performance. In this paper, we propose planer visible-light HCGs with beam steering ability for transmitted beam using titanium dioxide on glass substrates. By choosing proper grating parameters, we can manipulate the phase of incident light according to the design. Subwavelength-grating profiles result in highlydirectional far-field patterns, which decreased image cross-talk naturally. Also, we have verified that color dispersion has a minor effect on the overall image quality. With the threshold FWHM of the directional backlight at 7 degrees, a design based on iPhone XR which viewing distance ranging up to 15 cm meets cross-talk criterion was achieved by the simulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:05:09Z (GMT). No. of bitstreams: 1 ntu-108-R05941080-1.pdf: 4870110 bytes, checksum: b1d0682392a15197b370ff424240be69 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 緒論 1 1.1 文獻回顧 1 1.1.1 繞射理論與高折射率差光柵研究 1 1.1.2 立體顯示器簡介、基本原理、技術分類 7 1.2 研究動機 12 1.3 論文架構 13 Chapter 2 研究工具與基本原理 14 2.1 高折射率差光柵理論 14 2.1.1 高折射率差光柵概述 14 2.1.2 高折射率差光柵使光波偏轉之相位條件 19 2.2 COMSOL Multiphysics 模擬軟體介紹 21 2.3 等效全向輻射功率Effective Isotropic Radiated Power (EIRP)定義 23 2.4 光源設置 24 2.4.1 波長色散(chromatic dispersion) 24 2.4.2 角度半高全寬(FWHM of directional backlight) 24 2.5 輻射度學與光度學(Radiometry and Photometry) 26 2.6 觀賞視域(Viewing Zone)定義 28 2.7 交互干擾(Crosstalk)定義 31 Chapter 3 高折射率差次波長光柵應用於裸眼式立體顯示器之設計 33 3.1 基本架構與設計原理 33 3.1.1 觀賞距離與畫素出射角度的關係 34 3.1.2 HCGs之參數設計 35 3.2 參數分析 39 3.2.1 主波長之光柵結構參數 39 3.2.2 週期間距對出射角度影響 46 3.2.3 色散效應及指向性背光源角度半高全寬對出射角度影響 48 Chapter 4 立體影像品質分析 53 4.1 觀賞視域分析 53 4.2 交互干擾分析 57 Chapter 5 結論 62 REFERENCES 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 裸眼立體顯示器 | zh_TW |
| dc.subject | 高折射差光柵 | zh_TW |
| dc.subject | high-index-contrast-gratings | en |
| dc.subject | autostereoscopic display | en |
| dc.title | 基於高折射率差光柵之裸眼立體顯示 | zh_TW |
| dc.title | Naked Eye 3D Display Based on High-Index-Contrast Gratings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Hoang-Yan Lin),王子建(Tzyy-Jiann Wang),葉文嵐(Wen-Lan Yeh) | |
| dc.subject.keyword | 高折射差光柵,裸眼立體顯示器, | zh_TW |
| dc.subject.keyword | high-index-contrast-gratings,autostereoscopic display, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201901994 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
