請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72746
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
dc.contributor.author | Yi-Xi Peng | en |
dc.contributor.author | 彭一茜 | zh_TW |
dc.date.accessioned | 2021-06-17T07:05:06Z | - |
dc.date.available | 2022-07-31 | |
dc.date.copyright | 2019-07-31 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-26 | |
dc.identifier.citation | Abe, O., Yamasue, H., Yamada, H., Masutani, Y., Kabasawa, H., Sasaki, H., et al. (2010). Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed, 23(5), 446-458. doi:10.1002/nbm.1479
Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013). The convergence of maturational change and structural covariance in human cortical networks. J Neurosci, 33(7), 2889-2899. doi:10.1523/jneurosci.3554-12.2013 Avram, A. V., Sarlls, J. E., Barnett, A. S., Ozarslan, E., Thomas, C., Irfanoglu, M. O., et al. (2016). Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. Neuroimage, 127, 422-434. doi:10.1016/j.neuroimage.2015.11.027 Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., et al. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex, 15(12), 1848-1854. doi:10.1093/cercor/bhi062 Bartres-Faz, D., Clemente, I. C., & Junque, C. (2001). [White matter changes and cognitive performance in aging]. Rev Neurol, 33(4), 347-353. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magn Reson Med, 44(4), 625-632. Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev, 81(2), 871-927. doi:10.1152/physrev.2001.81.2.871 Bennett, I. J., & Madden, D. J. (2014). Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187-205. doi:10.1016/j.neuroscience.2013.11.026 Blakemore, S. J. (2008). The social brain in adolescence. Nat Rev Neurosci, 9(4), 267-277. doi:10.1038/nrn2353 Blumenfeld, H. (2010). Neuroanatomy through clinical cases. Copyright© 2010 by Sinauer Associates. Bohland, J. W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H. C., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol, 5(3), e1000334. doi:10.1371/journal.pcbi.1000334 Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci, 13(7), 2801-2820. Bowen, J., Teri, L., Kukull, W., McCormick, W., McCurry, S. M., & Larson, E. B. (1997). Progression to dementia in patients with isolated memory loss. Lancet, 349(9054), 763-765. doi:10.1016/s0140-6736(96)08256-6 Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. J Neurosci, 28(28), 7031-7035. doi:10.1523/jneurosci.0742-08.2008 Caligiuri, M. E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A., & Cherubini, A. (2015). Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review. Neuroinformatics, 13(3), 261-276. doi:10.1007/s12021-015-9260-y Chang, E. H., Argyelan, M., Aggarwal, M., Chandon, T. S., Karlsgodt, K. H., Mori, S., et al. (2017). The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains. Neuroimage, 147, 253-261. doi:10.1016/j.neuroimage.2016.11.068 Chang-le Chen (2017) The 25th ISMRM annual meeting, Honolulu, HI, USA Chechik, G., Meilijson, I., & Ruppin, E. (1998). Synaptic pruning in development: a computational account. Neural Comput, 10(7), 1759-1777. Chen, Y. J., Lo, Y. C., Hsu, Y. C., Fan, C. C., Hwang, T. J., Liu, C. M., et al. (2015). Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp, 36(9), 3441-3458. doi:10.1002/hbm.22854 Chen, Z., Zhang, H., Yushkevich, P. A., Liu, M., & Beaulieu, C. (2016). Maturation Along White Matter Tracts in Human Brain Using a Diffusion Tensor Surface Model Tract-Specific Analysis. Front Neuroanat, 10, 9. doi:10.3389/fnana.2016.00009 Cox, S. R., Ritchie, S. J., Tucker-Drob, E. M., Liewald, D. C., Hagenaars, S. P., Davies, G., et al. (2016). Ageing and brain white matter structure in 3,513 UK Biobank participants. Nat Commun, 7, 13629. doi:10.1038/ncomms13629 Cragg, B. G. (1975). The development of synapses in the visual system of the cat. J Comp Neurol, 160(2), 147-166. doi:10.1002/cne.901600202 Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends Cogn Sci, 10(3), 131-138. doi:10.1016/j.tics.2006.01.007 De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cereb Cortex, 11(6), 552-557. doi:10.1093/cercor/11.6.552 Dietrich, O., Raya, J. G., Reeder, S. B., Reiser, M. F., & Schoenberg, S. O. (2007). Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging, 26(2), 375-385. doi:10.1002/jmri.20969 DuPre, E., & Spreng, R. N. (2017). Structural covariance networks across the life span, from 6 to 94 years of age. Netw Neurosci, 1(3), 302-323. doi:10.1162/NETN_a_00016 Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends Neurosci, 31(7), 361-370. doi:10.1016/j.tins.2008.04.001 Forsyth, J. K., Bachman, P., Mathalon, D. H., Roach, B. J., & Asarnow, R. F. (2015). Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain. Proc Natl Acad Sci U S A, 112(50), 15331-15336. doi:10.1073/pnas.1509262112 Fritzsche, K. H., Laun, F. B., Meinzer, H. P., & Stieltjes, B. (2010). Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging? Neuroimage, 51(1), 242-251. doi:10.1016/j.neuroimage.2010.02.007 Gazes, Y., Bowman, F. D., Razlighi, Q. R., O'Shea, D., Stern, Y., & Habeck, C. (2016). White matter tract covariance patterns predict age-declining cognitive abilities. Neuroimage, 125, 53-60. doi:10.1016/j.neuroimage.2015.10.016 Gruszecki, M., Lancaster, G., Stefanovska, A., Neary, J. P., Dech, R. T., Guminski, W., et al. (2018). Human subarachnoid space width oscillations in the resting state. Sci Rep, 8(1), 3057. doi:10.1038/s41598-018-21038-0 He, Y., Chen, Z., Gong, G., & Evans, A. (2009). Neuronal networks in Alzheimer's disease. Neuroscientist, 15(4), 333-350. doi:10.1177/1073858409334423 Hill, R. A., Li, A. M., & Grutzendler, J. (2018). Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci, 21(5), 683-695. doi:10.1038/s41593-018-0120-6 Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., et al. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352(6286), 712-716. doi:10.1126/science.aad8373 Hsu, Y. C., Hsu, C. H., & Tseng, W. Y. (2012). A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. Neuroimage, 63(2), 818-834. doi:10.1016/j.neuroimage.2012.07.033 Hsu, Y. C., Lo, Y. C., Chen, Y. J., Wedeen, V. J., & Isaac Tseng, W. Y. (2015). NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum Brain Mapp, 36(9), 3528-3541. doi:10.1002/hbm.22860 Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J., & Bergles, D. E. (2018). Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci, 21(5), 696-706. doi:10.1038/s41593-018-0121-5 Huttenlocher, P. R. (1984). Synapse elimination and plasticity in developing human cerebral cortex. Am J Ment Defic, 88(5), 488-496. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol, 387(2), 167-178. Inano, S., Takao, H., Hayashi, N., Abe, O., & Ohtomo, K. (2011). Effects of age and gender on white matter integrity. AJNR Am J Neuroradiol, 32(11), 2103-2109. doi:10.3174/ajnr.A2785 Judith Huang, (2017) The 34th ESMRMB annual meeting, Barcelona, Spain Kandel, E. R., Markram, H., Matthews, P. M., Yuste, R., & Koch, C. (2013). Neuroscience thinks big (and collaboratively). Nat Rev Neurosci, 14(9), 659-664. doi:10.1038/nrn3578 Kaye, J. A., DeCarli, C., Luxenberg, J. S., & Rapoport, S. I. (1992). The significance of age-related enlargement of the cerebral ventricles in healthy men and women measured by quantitative computed X-ray tomography. J Am Geriatr Soc, 40(3), 225-231. Kelly, M. E., Duff, H., Kelly, S., McHugh Power, J. E., Brennan, S., Lawlor, B. A., et al. (2017). The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst Rev, 6(1), 259. doi:10.1186/s13643-017-0632-2 Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., et al. (2013). Developmental changes in organization of structural brain networks. Cereb Cortex, 23(9), 2072-2085. doi:10.1093/cercor/bhs187 Kochunov, P., Glahn, D. C., Rowland, L. M., Olvera, R. L., Winkler, A., Yang, Y. H., et al. (2013). Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol Psychiatry, 73(5), 482-491. doi:10.1016/j.biopsych.2012.10.002 Kodiweera, C., Alexander, A. L., Harezlak, J., McAllister, T. W., & Wu, Y. C. (2016). Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. Neuroimage, 128, 180-192. doi:10.1016/j.neuroimage.2015.12.033 Krogsrud, S. K., Fjell, A. M., Tamnes, C. K., Grydeland, H., Mork, L., Due-Tonnessen, P., et al. (2016). Changes in white matter microstructure in the developing brain--A longitudinal diffusion tensor imaging study of children from 4 to 11years of age. Neuroimage, 124(Pt A), 473-486. doi:10.1016/j.neuroimage.2015.09.017 Kumar, R., Chavez, A. S., Macey, P. M., Woo, M. A., & Harper, R. M. (2013). Brain axial and radial diffusivity changes with age and gender in healthy adults. Brain Res, 1512, 22-36. doi:10.1016/j.brainres.2013.03.028 Kuo, L. W., Chen, J. H., Wedeen, V. J., & Tseng, W. Y. (2008). Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage, 41(1), 7-18. doi:10.1016/j.neuroimage.2008.02.016 Lebel, C., & Deoni, S. (2018). The development of brain white matter microstructure. Neuroimage, 182, 207-218. doi:10.1016/j.neuroimage.2017.12.097 Liu, H., Wang, L., Geng, Z., Zhu, Q., Song, Z., Chang, R., et al. (2016). A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain. Neuropsychiatr Dis Treat, 12, 453-465. doi:10.2147/ndt.S90674 Liu, H., Yang, Y., Xia, Y., Zhu, W., Leak, R. K., Wei, Z., et al. (2017). Aging of cerebral white matter. Ageing Res Rev, 34, 64-76. doi:10.1016/j.arr.2016.11.006 Mechelli, A., Friston, K. J., Frackowiak, R. S., & Price, C. J. (2005). Structural covariance in the human cortex. J Neurosci, 25(36), 8303-8310. doi:10.1523/jneurosci.0357-05.2005 Mortamet, B., Zeng, D., Gerig, G., Prastawa, M., & Bullitt, E. (2005). Effects of healthy aging measured by intracranial compartment volumes using a designed MR brain database. Med Image Comput Comput Assist Interv, 8(Pt 1), 383-391. Mukoyama, M. (1973). Age changes in internodal length in the human spinal roots--nerve teasing study. Nagoya J Med Sci, 36(1), 17-27. Oberman, L., & Pascual-Leone, A. (2013). Changes in plasticity across the lifespan: cause of disease and target for intervention. Prog Brain Res, 207, 91-120. doi:10.1016/b978-0-444-63327-9.00016-3 Ozarslan, E., Koay, C. G., Shepherd, T. M., Komlosh, M. E., Irfanoglu, M. O., Pierpaoli, C., et al. (2013). Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage, 78, 16-32. doi:10.1016/j.neuroimage.2013.04.016 Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci, 9(12), 947-957. doi:10.1038/nrn2513 Peters, A. (2002). The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol, 31(8-9), 581-593. Peters, R. (2006). Ageing and the brain. Postgrad Med J, 82(964), 84-88. doi:10.1136/pgmj.2005.036665 Rakic, P., Bourgeois, J. P., & Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog Brain Res, 102, 227-243. doi:10.1016/s0079-6123(08)60543-9 Raznahan, A., Lerch, J. P., Lee, N., Greenstein, D., Wallace, G. L., Stockman, M., et al. (2011). Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron, 72(5), 873-884. doi:10.1016/j.neuron.2011.09.028 Reese, T. G., Heid, O., Weisskoff, R. M., & Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med, 49(1), 177-182. doi:10.1002/mrm.10308 Riccomagno, M. M., & Kolodkin, A. L. (2015). Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol, 31, 779-805. doi:10.1146/annurev-cellbio-100913-013038 Rusticus, S. A., & Lovato, C. Y. (2014). Impact of sample size and variability on the power and type I error rates of equivalence tests: A simulation study. Practical Assessment, Research & Evaluation, 19(11), 1-10. Ryan, J., Artero, S., Carriere, I., Scali, J., Maller, J. J., Meslin, C., et al. (2014). Brain volumes in late life: gender, hormone treatment, and estrogen receptor variants. Neurobiol Aging, 35(3), 645-654. doi:10.1016/j.neurobiolaging.2013.09.026 Sellgren, C. M., Gracias, J., Watmuff, B., Biag, J. D., Thanos, J. M., Whittredge, P. B., et al. (2019). Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci, 22(3), 374-385. doi:10.1038/s41593-018-0334-7 Sharda, M., Khundrakpam, B. S., Evans, A. C., & Singh, N. C. (2016). Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct, 221(2), 1017-1032. doi:10.1007/s00429-014-0953-z Spear, L. P. (2013). Adolescent neurodevelopment. J Adolesc Health, 52(2 Suppl 2), S7-13. doi:10.1016/j.jadohealth.2012.05.006 Sugiyama, I., Tanaka, K., Akita, M., Yoshida, K., Kawase, T., & Asou, H. (2002). Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J Neurosci Res, 70(3), 309-317. doi:10.1002/jnr.10386 Swire, M., & Ffrench-Constant, C. (2018). Seeing Is Believing: Myelin Dynamics in the Adult CNS. Neuron, 98(4), 684-686. doi:10.1016/j.neuron.2018.05.005 Takagi, T., Nakamura, M., Yamada, M., Hikishima, K., Momoshima, S., Fujiyoshi, K., et al. (2009). Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage, 44(3), 884-892. doi:10.1016/j.neuroimage.2008.09.022 Thompson, J. J., Blair, M. R., & Henrey, A. J. (2014). Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood. PLoS One, 9(4), e94215. doi:10.1371/journal.pone.0094215 Timpe, J. C., Rowe, K. C., Matsui, J., Magnotta, V. A., & Denburg, N. L. (2011). White matter integrity, as measured by diffusion tensor imaging, distinguishes between impaired and unimpaired older adult decision-makers: A preliminary investigation. J Cogn Psychol (Hove), 23(6), 760-767. doi:10.1080/20445911.2011.578065 Tuch, D. S. (2004). Q-ball imaging. Magn Reson Med, 52(6), 1358-1372. doi:10.1002/mrm.20279 Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. doi:10.1006/nimg.2001.0978 Van Essen, D. C., & Ugurbil, K. (2012). The future of the human connectome. Neuroimage, 62(2), 1299-1310. doi:10.1016/j.neuroimage.2012.01.032 Vance, D. E., Bail, J., Enah, C. C., Palmer, J. J., & Hoenig, A. K. (2016). The impact of employment on cognition and cognitive reserve: Implications across diseases and aging. Nursing: Research and Reviews, 6, 61. Vance, D. E., Cody, S. L., Yoo-Jeong, M., Jones, G. L., & Nicholson, W. C. (2015). The Role of Employment on Neurocognitive Reserve in Adults With HIV: A Review of the Literature. J Assoc Nurses AIDS Care, 26(4), 316-329. doi:10.1016/j.jana.2015.04.003 Vance, D. E., Roberson, A. J., McGuinness, T. M., & Fazeli, P. L. (2010). How neuroplasticity and cognitive reserve protect cognitive functioning. J Psychosoc Nurs Ment Health Serv, 48(4), 23-30. doi:10.3928/02793695-20100302-01 Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 54(6), 1377-1386. doi:10.1002/mrm.20642 Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., et al. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 1267-1277. doi:10.1016/j.neuroimage.2008.03.036 Westlye, L. T., Walhovd, K. B., Dale, A. M., Bjornerud, A., Due-Tonnessen, P., Engvig, A., et al. (2010). Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex, 20(9), 2055-2068. doi:10.1093/cercor/bhp280 Xie, S., Zhang, Z., Chang, F., Wang, Y., Zhang, Z., Zhou, Z., et al. (2016). Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging. PLoS One, 11(6), e0157533. doi:10.1371/journal.pone.0157533 Yeh, F. C., Wedeen, V. J., & Tseng, W. Y. (2011). Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage, 55(3), 1054-1062. doi:10.1016/j.neuroimage.2010.11.087 Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2014). Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88, 79-90. doi:10.1016/j.neuroimage.2013.11.027 Zuo, Y., Lin, A., Chang, P., & Gan, W. B. (2005). Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron, 46(2), 181-189. doi:10.1016/j.neuron.2005.04.001 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72746 | - |
dc.description.abstract | 研究背景
過去一項研究表明人腦白質纖維在老化的進程中逐漸喪失它們的獨特性,各纖維束之間的協作性增加,這是由於去分化所致。在此研究的基礎之上,我們的目的是探索正常發育中大腦分化的相關關係,並驗證正常衰老中去分化的相關關係。本研究我們使用一種嶄新的大腦白質神經纖維之共變性分析方法(Tract covariance),用其來表示受試者之間任意一對神經纖維束之間的相關性。為了評估人腦從年輕到高齡的白質神經纖維束共變性變化特徵,我們收集了481名年齡在5到74歲之間的健康人群的擴散頻譜影像(DSI)數據。我們假設神經纖維束共變性從兒童到青少年晚期呈下降趨勢,表明分化,從二十歲開始呈上升趨勢,反映出去分化。 研究方法 481位參與者依照年齡被分為6組。每位受試者均接受核磁共振成像掃描以獲得大腦DSI影像和T1影像。掃描的機台為3T核磁共振(TIM Trio, Siemen),搭配使用32通道相控陣線圈。運用全腦神經纖維自動化分析系統(Tract-based automatic analysis, TBAA)對DSI影像進行分析。透過TBAA技術將收集到的影像資料合併為一個大腦影像範本,此範本再與實驗室已發展之NTU-DSI-122大腦範本及76束大腦白質纖維束進行對位及座標轉換,計算每一位受試者的腦部白質纖維特徵參數。本次研究主要針對綜合非等向性指標(GFA)進行評估。在TBAA分析之後會得到每一年齡層的三維GFA connectogram,隨後將每一條纖維的路徑 GFA值進行平均,得出每一條纖維束的平均GFA值。為了比較每各年齡組白質纖維之間關聯的強弱,首先平均每條神經纖維路徑上的GFA值後進行神經纖維束之共變性分析,共變性分析是使用凈相關(Partial correlation)的方法控制年齡、性別以及DSI遺漏張數之影響後,進行76條神經纖維中任意兩條在同一年齡組之間的共變性分析,最後通過76 x 76之共變性矩陣(Tract covariance matrix)的方式表示出來。為了比較各組共變性矩陣的高低,我們使用排列檢定(Permutation testing)來探討兒童組和其他組之間的任何兩條纖維束的相關性是否有顯著差異。為了確定纖維束共變性之間變化的主要趨勢,我們進一步對排列檢驗得到的所有p值取-log,通過比較-log |p|的大小與數量來確定共變性較高的一組。 結果 白質神經纖維束共變性網路可以表示神經纖維束之間的相互依賴程度。 從兒童到青少年,神經纖維束傾向於具備自己的功能(分化),並在青春期後逐漸喪失其個性(去分化)。排列堅定的統計結果進一步證實,青少年時期纖維束之間的關聯最少,而五十歲以上的組別纖維束之間的合作最為顯著。值得注意的是,在進入三十歲後,兒童組纖維束相關性較高的主導趨勢被逆轉。 討論與結論 纖維束共變性網路的在進入二十歲之後的變化證實了Cox等人發現的白質從中年到老年的微觀結構產生去分化的假設。使用相同的方法,我們進一步提供了從兒童到年輕成年人之間白質微觀結構出現分化的證據。本次研究的纖維束共變性在十幾歲左右達到最低,這有異於白質結構在三十幾歲達到成熟巔峰的觀念。白質成熟高峰的年齡和最小共變性所在的年齡之間的差異表明,除了大腦發育和衰老的正常影響之外,白質神經纖維束共變性網路的變化也歸因於突觸與軸突的修剪以及大腦白質的可塑性功能。 | zh_TW |
dc.description.abstract | Introduction
An increasing correlation among white matter tracts in older age, which is hypothesized to arise from de-differentiation, has been illustrated by a previous study. Here, we aimed to explore the brain correlates of differentiation in normal development and verify the reported correlates of de-differentiation in normal aging. We proposed a novel metric called tract covariance, which was used to indicate the relationship between any pair of tracts across participants. To evaluate the variation of tract covariance from developmental to aging periods, we collected diffusion spectrum imaging (DSI) data in 481 generally healthy people aged 5 to 74 years. We hypothesized that tract covariance decreased from childhood to late adolescence, indicating differentiation, and increased from 3rd decade, reflecting de-differentiation. Methods The participants were divided into six groups per decade. Each participant received an MRI scan to obtain DSI data and T1 image of the brain on a 3T MRI scanner (TIM Trio, Siemen) with a 32-channel phased array coil. We used tract-based automatic analysis (TBAA) to obtain a 2D mean generalized fractional anisotropy (GFA) connectogram of 76 white matter tract bundles for each participant. We averaged the 100 values of each tract profile to obtain a mean GFA value for each tract. We compared the tract covariance among these six groups, which were defined as the partial correlation between each pair of tracts in variations of GFA values across subjects, with age, gender and dropout number being regressed. For statistical analysis, we used the permutation test to find whether there were significant differences in the association of any two tracts between children group and any other group. In order to identify major trends of the changes between covariance, we further took the -log of all p values derived from the permutation test for visualizing the difference distribution. Results Tract covariance can indicate the variations of inter-dependence of the tracts. Each tract tended to perform its own functions from children to teenagers (differentiation) and lose its individuality gradually after the end of the 2nd decade (de-differentiation). The permutation results further verified that teenagers have the least tract-to-tract associations, whereas the group of 6th-decade-and-beyond exhibits the strongest cooperation among tracts. Particularly, the predominance of higher correlations in the children group is reversed after entering the 4th decade. Discussion and Conclusion The changes in tract covariance after the 3rd decade corroborate the hypothesis of microstructural de-differentiation of white matter in elderly people reported by Cox et al.. By using the same methodology, we further provide evidence of microstructural differentiation from children to young adulthood. Unlike white matter maturation which peaks around the 4th decade, our results of tract covariance reaches its minimum around the 2nd decade. The disparity between the age of peak maturation and the age of least tract covariance suggests that besides normal effects of brain development and aging, the changes of covariance are also modulated in part by pruning and neuroplasticity of the white matter tracts. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:05:06Z (GMT). No. of bitstreams: 1 ntu-108-R06548063-1.pdf: 2957493 bytes, checksum: 33b9479cb9e06f79bb78919df03c4db9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 v Contents of Figures xi Contents of Tables xii Chapter 1 Introduction 1 1.1 The development of cerebral white matter 1 1.2 White matter in brain aging 4 1.3 Introduction to tract covariance 6 1.4 Motivation and purpose 8 Chapter 2 Materials and Methods 9 2.1 Diffusion MRI and Diffusion spectrum imaging (DSI) 9 2.2 Participants 10 2.2.1 Participants with uneven distribution of gender 10 2.2.2 Participants after gender balance 12 2.3 MRI data acquisition 13 2.4 Imaging analysis 14 2.4.1 Image Quality Assurance 14 2.4.2 Diffusion data reconstruction 16 2.4.3 Tract-based automatic analysis (TBAA) 17 2.4.4 CSF partial volume effect correction 21 2.4.5 Tract covariance analysis 22 2.4.6 Mask for covariance matrixes 23 2.5 Statistical analysis 24 2.5.1 Permutation test 24 2.5.2 Quantification of permutation results 27 Chapter 3 Results 28 3.1 Change characteristics of white matter tract covariance 28 3.2 Gender specific tract covariance 32 3.3 Permutation testing results of the 481 participants 34 3.3.1 Correlations among tracts comparing with the children group 34 3.3.2 Circos plots showing connections with significant differences 37 Chapter 4 Discussion 40 4.1 Brief summary 40 4.2 Synaptic pruning effect on tract differentiation 40 4.3 Neuroplasticity effect on tract de-differentiation 42 4.4 Gender impact on the whole differentiation and de-differentiation trend 45 4.5 Limitations and future works 47 Chapter 5 Conclusion 48 References 49 Appendix 58 | |
dc.language.iso | en | |
dc.title | 人腦神經纖維束共變性於生命進程之變化 | zh_TW |
dc.title | Variations of white matter tract covariance across the lifespan | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 曾文毅(Wen-Yih Isaac Tseng) | |
dc.contributor.oralexamcommittee | 吳文超(Wen-Chau Wu) | |
dc.subject.keyword | 擴散頻譜造影,白質神經纖維束,神經纖維束共變性網絡,分化,去分化, | zh_TW |
dc.subject.keyword | Diffusion spectrum imaging,White matter tract,Tract covariance,Differentiation,De-differentiation, | en |
dc.relation.page | 62 | |
dc.identifier.doi | 10.6342/NTU201901637 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。