請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧茂華 | |
| dc.contributor.author | Guan-Yi Li | en |
| dc.contributor.author | 李琯儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:05:01Z | - |
| dc.date.available | 2020-07-31 | |
| dc.date.copyright | 2019-07-31 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-26 | |
| dc.identifier.citation | [1] F.V. Chukhrov, A.I. Gorshkov, and E.S. Rudnitskaya (1980) Manganese minerals in clays: A review. Clay and clay minerals, Vol. 28, No. 5, pp 346-354. DOI: https://doi.org/10.1346/CCMN.1980.0280504
[2] J.E. Post (1999) Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, Vol. 96, No. 7, pp.3447-3454. DOI: https://doi.org/10.1073/pnas.96.7.3447 [3] A. R. Armstrong and P.G. Bruce (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, Vol. 381, No. 6, 499-500. DOI: https://doi.org/10.1038/381499a0 [4] X. Zhang, Z. Hou, X. Li, J. Ling, Y. Zhu, and Y. Qian (2016. Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. Journal of Materials Chemistry A, Vol. 4, p. 856-860. DOI: https://doi.org/10.1039/c5ta08857g [5] B.A. Manning, S.E. Fendorf, B. Bostick, and D.L (2002) Arsenic(III) oxidation and arsenic(V) reactions on synthetic birnessite. Environmental Science and Technology, 36(5), 976-981. DOI: https://doi.org/10.1021/es0110170 [6] O. Bricker (1965) Some stability relations in the system Mn-O2-H2O at 25° and one atmosphere total pressure. American Mineralogist, Vol. 50(9), p.1296-1354. [7] G.P. Glasby (2006) Manganese: Predominant role of nodules and crusts. Marine Geochemistry, pp. 371-427. DOI: https://doi.org/10.1007/3-540-32144-6_11 [8] A. Muan (1959) Stability relations among some manganese minerals. American Mineralogist, Vol. 44, p. 946-960. [9] H.J. Bray and S.A.T. Redfern (1999) Kinetics of dehydration of Ca-montmorillonite. Physics and Chemistry of Minerals, Vol. 26, Issue 7, pp 591-600. DOI: https://doi.org/10.1007/s002690050223. [10] R.M. Taylor, R.M. McKenzie, and K. Norrish (1964) The mineralogy and chemistry of manganese in some Australian soils. Australian Journal of Soil Research, Vol. 2, No. 2, p. 235-248. DOI: https://doi.org/10.1071/SR9640235 [11] O. Vidal and B. Dubacq (2009) Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity. Geochimica et Cosmochimica Acta, Vol. 73, Issue 21., p. 6544-6564. DOI: https://doi.org/10.1016/j.gca.2009.07.035 [12] R.E. Grim (1968) Clay mineralogy. McGraw-Hill, Second Edition. ISBN-13: 978-0070248366 [13] D.C. Golden, J.B. Dixon, and C.C. Chen (1986) Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clay and Clay Minerals, Vol. 34, Issue. 5, pp 511-520. DOI: https://doi.org/10.1346/CCMN.1986.0340503 [14] S.M. Auerbach, K.A. Carrado, and P.K. Dutta (2004) Handbook of layered materials. CRC Press, 1 edition. ISBN-13: 978-0824753498 [15] J. Luo, S.R. Segal, J.Y. Wang, Z.R. Tian, and S.L. Suib (1996) Synthesis, characterization, and reactivity of Feitknechtite. Materials Research Society Symposium Proceedings, Vol. 431, p.3-8. DOI: https://doi.org/10.1557/PROC-431-3 [16] L.H.P. Jones and A.A. Milne (1956) Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland. Mineralogical Magazine, Vol. 31, Issue 235, pp. 283-288. DOI: https://doi.org/10.1180/minmag.1956.031.235.01 [17] J.E. Post and D.R. Veblen (1990) Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method American Mineralogist, Vol. 75, No. 5-6p. 477-489. [18] Y.F. Shen, S.L. Suib, and C.L. O’Young (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. Journal of the American Chemical Society, 116, 11020-11029. DOI: https://doi.org/10.1021/ja00103a018 [19] R.G. Burns and V.M. Burns (1977) The mineralogy and crystal chemistry of deep-sea manganese nodules, a polymetallic resource of the twenty-first century. Phil. Trans. R. Soc. Lond. A., Vol. 286, Issue 1336, p. 283-301. DOI: https://doi.org/10.1098/rsta.1977.0118 [20] D.A. Crerar and H.L. Barnes (1974) Deposition of deep-sea manganese nodules. Geochimica et Cosmochimica Acta, Vol. 35, Issue 2, p. 279-300. DOI: https://doi.org/10.1016/0016-7037(74)90111-2 [21] G.P. Glasby (1972) The mineralogy of manganese nodules from a range of marine environments. Marine Geology, Vol. 13, Issue 1, p. 57-72. DOI: https://doi.org/10.1016/0025-3227(72)90071-0 [22] R.M. Mckenzie (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, Vol. 38, Issue 296, pp. 493-502. DOI: https://doi.org/10.1180/minmag.1971.038.296.12 [23] W. Buser, P. Graf and W. Feitknecht (1954) Beitrag zur kenntnis der mangan(II)-manganite und des δ-MnO2. Helvetica Chimica Acta, Vol. 37, No. 269, 2322-2333. [24] Q. Feng and K. Yanagisawa (2000) Effects of synthesis parameters on the formation of birnessite-type manganese oxides. Journal of Materials Science Letters, Vol. 19, No. 17, p. 1567-1570. DOI: https://doi.org/10.1023/A:1006733308073 [25] X. H. Feng, F. Liu, W.F. Tan, X.W. Liu (2004) Synthesis of birnessite from the oxidation of Mn2+ by O2 in alkali medium: Effect of synthesis conditions. Clay and Clay Minerals, Vol. 52, Issue 2, pp 240-250. DOI: https://doi.org/10.1346/CCMN.2004.0520210 [26] J. Cai and S.L. Suib (2001) Preparation of layer structure birnessite by air oxidation: synthetic factors and framework dopant effects. Inorganic Chemistry Communications, 4, 493-495. [27] J. Cai, J. Liu, and S.L. Suib (2002) Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chemistry of Materials, Vol. 14, No. 5, p.2071-2077. DOI: https://doi.org/10.1021/cm010771h [28] J. Luo and S.L. Suib (1997) Preparative parameters, magnesium effect, and anion effects in the crystallization of birnessite. The Journal of Physical Chemistry B, 101, 49, 10403-10413. DOI: https://doi.org/10.1021/jp9720449 [29] L. Liu, Q. Feng, and K. Yanagisawa (2000) Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process. Journal of Materials Science Letters, Vol. 19, Issue 22, pp 2047-2050. DOI: https://doi.org/10.1023/A:1026791825617 [30] J. Yin, E.S. Takeuchi, K.J. Takeuchi, and A.C. Marschilok (2016) Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry. Inorganica Chimica Acta, Vol. 453, p. 230-237. DOI: https://doi.org/10.1016/j.ica.2016.08.026 [31] D.S. Yang and M.K. Wang (2001) Syntheses and characterization of well-crystallized birnessite. Chemistry of Materials, Vol. 13, No. 8, p. 2589-2594. DOI: https://doi.org/10.1021/cm010010e [32] W.F. Cole, A.D. Wadsley, and A. Walkley (1947) An X-Ray diffraction study of manganese dioxide. The Electrochemical Society, Vol. 92, Issue 1, 133-158. DOI: https://doi.org/10.1149/1.3071811 [33] S. Bach, J.P. Pereira-Rarmos, N. Baffier, and R.Messina (1991) Birnessite manganese dioxide synthesized via a sol-gel process: a new rechargeable cathodic material for lithium batteries. Electrochimica Acta, Vol. 36, Issue 10, p. 1595-1603. DOI: https://doi.org/10.1016/0013-4686(91)85012-V [34] S. Ching, J. A. Landrigan, and M. Jorgensen (1995) Sol-gel synthesis of birnessite from KMnO4 and simple sugars. Chemistry of Materials, Vol. 7, No. 9, p. 1604-1606. DOI: https://doi.org/10.1021/cm00057a003 [35] S. Ching, D.J. Petrovay, M.L. Jorgensen, and S.L. Suib (1997) Sol-gel synthesis of layered birnessite-type manganese oxides. Inorganic Chemistry, Vol. 36, No. 5, p. 883-890. DOI: https://doi.org/10.1021/ic961088d [36] Y. Ma, J. Luo, and S.L. Suib (1999) Syntheses of birnessites using alcohols as reducing reagents: Effects of synthesis parameters on the formation of birnessite. Chemistry of Materials, Vol. 11, No. 8, p. 1972-1979. DOI: https://doi.org/10.1021/cm980399e [37] P.L. Goff, N. Baffier, S. Bach, J.P. Pereira-Ramos, R. Messina (1993) Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process. Solid State Ionics, Vol. 61, Issue 4, p. 309-315. DOI: https://doi.org/10.1016/0167-2738(93)90397-L [38] P.L. Goff, N. Baffier, S. Bach, and J.P. Pereira-Ramos (1994) Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis: classical and sol–gel routes. Journal of Materials Chemistry, Vol. 4, Issue 6, p. 875-881. DOI: https://doi.org/10.1039/JM9940400875 [39] M.A. Cheney, R. Jose, A. Banerjee, P.K. Bhowmik, S.Qian, and J.M. Okoh (2009) Synthesis and characterization of birnessite and cryptomelane nanostructures in presence of hoffmeister anions. Journal of nanomaterials, Vol. 2009, No. 19. DOI: http://dx.doi.org/10.1155/2009/940462 [40] J.C. Villegas, L.J. Garces, S. Gomez, J.P. Durand, and S.L. Suib (2005) Particle size control of crypomelane nanomaterials by use of H2O2 in acidic conditions. Chemistry of Materials, Vol. 17, No. 7, p. 1910-1918. DOI: https://doi.org/10.1021/cm048391u [41] M.A. Cheney, P.K. Bhowmik, S. Moriuchi, M.Villalobos, S. Quan, and S.W. Joo (2008) The effect of stirring on the morphology of birnessite nanoparticles. Journal of Nanomaterials, Vol. 2008, Ariticle ID: 16871, 9 pages. DOI: http://dx.doi.org/10.1155/2008/168716 [42] J.P. Lefkowitz, A.A. Rouff, and E.J. Elzinga (2013) Influence of pH on the Reductive Transformation of Birnessite by Aqueous Mn(II). Environmental Science and Technology, Vol. 47, No. 18, p. 10364-10371. DOI: https://doi.org/10.1021/es402108d [43] S. Tu, G.J. Racz, and T. B. Goh (1994) Transformations of synthetic birnessite as affected by pH and manganese concentration. Clay and Clay Minerals, Vol. 42, No. 3, p. 321-330. DOI: https://doi.org/10.1346/CCMN.1994.0420310 [44] J. Luo, Q. Zhang, and S.L. Suib (2000) Mechanistic and kinetic studies of crystallization of birnessite. Inorganic Chemistry, Vol. 39, No. 4, p.741-747. DOI: https://doi.org/10.1021/ic990456l [45] B.R. Chen, W. Sun, D.A. Kitchaev, J.S. Mangu,, V. Thampy, L.M. Glinley, B.P. Gorman, K.H. Stone, G. Ceder, M.K. Toney, and L.T. Schelhas (2018) Understanding crystallization pathways leading to manganese oxide polymorph formation. Nature Communications, Vol. 9, Article number: 2553. DOI: https://doi.org/10.1038/s41467-018-04917-y [46] J.W. Murray, J.G. Dillard, R.Giovanoli, H. Moers, and W. Stumm (1985) Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochimica et Cosmochimica Acta, Vol. 49, Issue 2, p. 463-470. DOI: https://doi.org/10.1016/0016-7037(85)90038-9 [47] S. Grangeon, F. Warmont, C. Tournassat, B. Lanson, M. Lanson, E. Elkaïm, and F. Claret (2017) Nucleation and growth of feitknechtite from nanocrystalline vernadite precursor. European Journal of Mineralogy, Vol. 29, Number 4, p. 767 – 776. DOI: https://doi.org/10.1127/ejm/2017/0029-2665 [48] H. Boumaiza, R. Coustel, G. Medjahdi, C. Ruby, and L. Bergoui (2017) Conditions for the formation of pure birnessite during the oxidation of Mn(II) cations in aqueous alkaline medium. Journal of Solid State Chemistry, Vol. 248, p. 18-25. DOI: https://doi.org/10.1016/j.jssc.2017.01.014 [49] D.S. Yang and M.K. Wang (2002) Syntheses and characterization of birnessite by oxidizing pyrochroite in alkaline conditions. Clays and Clay Minerals, Vol. 50, Issue 1, p. 63-69. DOI: https://doi.org/10.1346/000986002761002685 [50] S. Roy and P.K. Purkait (1968) Mineralogy and genesis of the metamorphosed manganese silicate rocks(gondite) of Gowari Wadhona, Madhya Pradesh, India. Contributions to Mineralogy and Petrology, Vol. 20, Issue 1, pp 86-114. DOI: https://doi.org/10.1007/BF00371068 [51] Y. Ukai, S. Nishimura, and T. Mayeda (1956) Mineralogical Study of Manganese Dioxide Mineral (Part 1). Journal of the Mineralogical Society of Japan, Vol. 2, Issue 6, pp. 431-446. DOI: https://doi.org/10.2465/gkk1952.2.431 [52] M. Fleischer (1960) Studies of the manganese oxide minerals. III. Psilomelane. American Mineralogist, Vol. 45, No. 1-2, p. 176-187. [53] A. Okada, T. Minakuchi, M. Shima. (1972) Study on the manganese nodule V. Thermal studies of the iron-manganese phase. Journal of the Oceanographical Society of Japan, Vol. 28, Issue 2, pp 39–47. DOI: https://doi.org/10.1007/BF02109719 [54] P.L. Goff, N. Baffier, S. Bach, and J.P. Pereira-Ramos (1996) Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group. Materials Research Bulletin, Vol. 31, No. 1, pp.63-75. DOI: https://doi.org/10.1016/0025-5408(95)00170-0 [55] S.L. Suib (2008) Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. Journal of Materials Chemistry, Vol., Issue 4, p.1623-1631. DOI: https://doi.org/10.1039/b714966m [56] Q. Feng, H. Kanoh, and K. Ooi (1999) Manganese oxide porous crystals. Journal of Materials Chemistry, Vol. 9, p.319-333. DOI: https://doi.org/10.1039/A805369C [57] J.P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, and P. Hagenmuller (1971) Sur quelqus nouvelles phases de formule NaxMnO2(x≤1). Journal of Solid State Chemistry, Vol. 3, Issue 1, p. 1-11. DOI: https://doi.org/10.1016/0022-4596(71)90001-6 [58] S. Cheng and S.T. Wong (1992) Synthesis and characterization of pillared buserite. Inorganic Chemistry, Vol. 31, No. 7, p. 1165-1172. DOI: https://doi.org/10.1021/ic00033a010 [59] S. Hirano, R. Narita, and S. Naka (1981) Hydrothermal synthesis and properties of NaxMnO2 crystals. Journal of Crystal Growth, Vol. 54, No. 3, p. 595-599. DOI: http://dx.doi.org/10.1016/0022-0248(81)90520-0 [60] M. Villalobos, I.N. Escobar-Quiroz, and C. Salazar-Camacho (2014) The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III). Geochimica et Cosmochimica Acta, Vol. 125, p.564-581. DOI: https://doi.org/10.1016/j.gca.2013.10.029 [61] S.T. Wong and S. Cheng (1992) Synthesis and characterization of pillared buserite. Inorganic Chemistry, Vol. 31, No. 7, p. 1165-1172. DOI: https://doi.org/10.1021/ic00033a010 [62] H.S. Choi, S.J. Kim, and J.J. Kim (2004) Dehydration behaviors of interlayer water in systhetic Buserites. Geosciences Journal, Vol. 8, Issue 3, pp 273-279. DOI: https://doi.org/10.1007/BF02910246 [63] T.A. Mellin and G. Lei (1993) Stabilization of 10Å-manganates by interlayer cations and hydrothermal treatment: Implications for the mineralogy of marine manganese concretions. Marine Geology, Vol. 115, No. 1, p. 67-83. DOI: https://doi.org/10.1016/0025-3227(93)90075-7 [64] I. Bakaimi, R.Brescia, C.M. Brown, A.A. Tsirlin, M.A. Green, and Alexandros Lappas (2016) Hydration induced spin glass state in a frustrated Na-Mn-O triangular lattice. Physical Review B, Vol. 93, No. 18. DOI: https://doi.org/10.1103/PhysRevB.93.184422 [65] C.M. Bethke (1986) Inverse hydrologic analysis of the distribution and origin of Gulf Coast‐type geopressured zones. Journal of Geophysical Research: Solid Earth, Vol. 91, Issue B6. DOI: https://doi.org/10.1029/JB091iB06p06535 [66] C.W. Liu, W.S. Lin, C. Shang, and S.H. Liu (2001) The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environmental Geology, Vol. 40, Issue 4–5, pp 518–527. DOI: https://doi.org/10.1007/s002540000193 [67] C.W. Liu and W.S. Lin (2005) A Smectite dehydration model in a shallow sedimentary basin: Model development. Clays and Clay Minerals, Vol. 53, Issue 1, pp 55-70. DOI: https://doi.org/10.1346/CCMN.2005.0530107 [68] N.T. Skipper, K. Refson, and J.D.C. McConnell (1989) Computer calculation of water-clay interactions using atomic pair potentials. Clays and Clay Minerals, Vol. 24, No. 2, p. 411-425. DOI: https://doi.org/10.1180/claymin.1989.024.2.16 [69] D.E. Smith (1998) Molecular computer simulations of the swelling properties and interlayer structure of cesium Montmorillonite. Langmuir, Vol. 14, No. 20, p. 5959-5967. DOI: https://doi.org/10.1021/la980015z [70] R.T. Cygan, J.E. Post., P.J. Heaney and J.D. Kubichi (2012) Molecular models of birnessite and related hydrated layered minerals. American Mineralogist, Vol. 97, p. 1505-1514. DOI: https://doi.org/10.2138/am.2012.3957 [71] S. Kim, S. Lee, K.W. Nam, J. Shin, S.Y. Lim, W. Cho, K. Suzuki, Y. Oshima, M. Hirayama, R. Kanno, and J.W. Choi (2016) On the mechanism of crystal water insertion during anomalous spinel-to- birnessite phase transition. Chemistry of Materials, Vol. 28, No. 15, p. 5488-5494. DOI: https://doi.org/10.1021/acs.chemmater.6b02083 [72] D.M. Moore and J. Hower (1986) Ordered interstratification of dehydrated and hydrated Na-Smectite. Clays and Clay Minerals, Vol. 34, No. 4, p. 379-384. DOI: https://doi.org/10.1346/CCMN.1986.0340404 [73] T.C. Wu, W.A. Bassett, W.L. Huang, and S. Guggenheim (1997) Montmorillonite under high H2O pressures: Stability of hydrate phases, rehydration hysteresis, and the effect of interlayer cations. American Mineralogist, Vol. 82, Issue 1-2, p. 69-78. DOI: https://doi.org/10.2138/am-1997-1-209 [74] Y. Li, X. Feng, S. Cui, Q. Shi, L. Mi, and W. Chen (2016) From α-NaMnO2 to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. CrystEngComm, Vol. 18, Issue 17, p.3136-3141. DOI: https://doi.org/10.1039/C6CE00191B [75] A. C. Lasaga (1998) Kinetic theory in the earth science. Princeton University Press. ISBN: 9781400864874 [76] 陳孟霞(2004)主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結之研究(碩士論文)。台北市:國立臺灣大學地質科學系。 [77] 張育維(2007)奈米二氧化鈦之視燒結活化能與相變研究(碩士論文)。台北市:國立臺灣大學地質科學系。 [78] 林書弘(2007)蒸發岩礦物熱分解動力學之研究方法與應用探討(碩士論文)。台北市:國立臺灣大學地質科學系。 [79] 吳尚庭(2012)藍晶石熱分解反應微結構變化與動力學探討(碩士論文)。台北市:國立臺灣大學地質科學系。 [80] 郭迦豪(2015)利用熱膨脹儀探討氫氧基磷灰石之熱分解反應與反應動力學(碩士論文)。台北市:國立臺灣大學地質科學系。 [81] 許樹恩與吳泰伯(1993)X光繞射原理與材料結構分析。新竹市:中國材料科學學會發行。ISBN: 975-98954-1-4。 [82] M.F. Easton, A.G. Mitchell, and W.F.K. Wynne-Jones (1952) The behaviour of mixtures of hydrogen peroxide and water. Part 1. Determination of the densities of mixtures of hydrogen peroxide and water. Transactions of the Faraday Society, Vol. 48, p. 796-801. DOI: https://doi.org/10.1039/TF9524800796 [83] 周晨亮(2009)層狀銅錳複合氧化物控制合成(碩士論文)。中國:內蒙古工業大學。 [84] M.A. Cheney, P.K. Bhowmik, S.Qian, S.W. Joo, W. Hou, and J.M. Okoh (2008) A new method of synthesizing black birnessite nanoparticles: From brown to black birnessite with nanostructure. Journal of Nanomaterials, Vol. 2008. DOI: http://dx.doi.org/10.1155/2008/763706 [85] J. Hou, Y. Li, M. Mao, L. Ren, and X. Zhao (2014) Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity. ACS Applied Materials and Interfaces, Vol. 6, No. 17, p. 14981-14987. DOI: https://doi.org/10.1021/am5027743 [86] X. Liang, Z. Zhao, M. Zhu, F. Lin, L. Wang, H. Yin, G. Qiu, F. Cao, X. Liu, and X. Feng (2017) Self-assembly of birnessite nanoflowers by staged three-dimensional oriented attachment. Environmental science: Nano, Vol. 4, No. 8. DOI: https://doi.org/10.1039/C6EN00619A [87] S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng, and M.S. Javed (2015) Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications. Applied Surface Science, Vol. 356, No. 30, p. 259-265. DOI: https://doi.org/10.1016/j.apsusc.2015.08.037 [88] S. Liu, C.Z. Fan, Y. Zhang, C.H. Li, and X.Z. You (2011) Low-temperature synthesis of Na2Mn5O10 for supercapacitor applications. Journal of Power Sources, Vol. 196, Issue 23, p. 10502-10506. DOI: https://doi.org/10.1016/j.jpowsour.2011.08.014 [89] M. Tsuda, H. Arai, Y. Nemoto, and Y. Sakurai (2003) Electrode performance of sodium and lithium-type Romanechite. Journal of The Electrochemical Society, Vol., 150, No. 6, p.659-664. DOI: https://doi.org/10.1149/1.1568109 [90] L. Rakočević, M. Novaković, J. Potočnik, D. Jugović, and I.S. Simatović (2018) Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device. Serbian Academy of Sciences and Arts, p. 154-156. [91] Y. Park, S.W. Lww, K.H. Kim, B.K. Min, A.K. Nayak, D.Peadhan, and Y. Sohn (2015) Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O18 nanowires. Scientific Reports, Vol. 5, 18275. DOL: https://doi.org/10.1038/srep18275 [92] C. Liu, W.I. Guo, Q.H. Wang, J.G. Li, X.P. Yang (2016) Parametric study of hydrothermal soft chemical synthesis and application of Na0.44MnO2 nanorods for Li-ion battery cathode materials: Synthesis conditions and electrochemical performance. Journal of Alloys and Compounds, Vol. 658, No. 15, p. 588-594. DOI: https://doi.org/10.1016/j.jallcom.2015.10.243 [93] Y. Li and Y. Wu (2009) Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Research, Vol. 2, Issue 1, pp 54–60. DOI: https://doi.org/10.1007/s12274-009-9003-1 [94] X. Zhou, R.K. Guduru, and P. Mohanty (2013) Synthesis and characterization of Na0.44MnO2 from solution precursors. Journal of Materials Chemistry A, Vol. 1, p.2757-2761. DOI: https://doi.org/10.1039/C3TA01134H [95] H. Xia, X. Zhu, J.Liu, Q. Liu, S. Lan, Q. Zhang, X. Liu, J.K. Seo, T. Chen, L. Gu, and Y.S. Meng. (2018) A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nature Communications, Vol. 9, Article number: 5100. DOI: https://doi.org/10.1038/s41467-018-07595-y [96] N. Brikner and A. Navrotsky (2017) Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane. Proceedings of the National Academy of Sciences, Vol. 114, No. 7. DOI: https://doi.org/10.1073/pnas.1620427114 [97] W. Kobayashi, A. Yanagita, T. Akaba, T. Shimono, D. Tanabe, and Y. Moritomo (2018) Thermal Expansion in Layered NaxMO2. Scientific Reports, Vol, 8:3899. DOI: https://doi.org/10.1038/s41598-018-22279-9 [98] S. Grangeon, B. Lanson, and M. Lanson (2014) Solid-state transformation of nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and interlayer structure. Acta Crystallographica Section B Structural Science Crystal Engineering Materials, Vol. 70, No. 5, p. 828-838. DOI: https://doi.org/10.1107/S2052520614013687 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72743 | - |
| dc.description.abstract | 水鈉錳礦(Birnessite,(Na, Ca)0.5(Mn4+, Mn3+)2O4 · 1.5 H2O)是自然界中常見的黏土礦物之一,以錳氧八面體組成主要的片狀結構,層間可填入多樣陽離子(如Na+、Mg2+、K+等)及水分子,廣泛分布於深海錳核、表層土壤及氧化錳礦床等地,因特殊的層狀構造及氧化特性,水鈉錳礦為具潛力的新興應用材料。水鈉錳礦常以非常細小的晶體狀態存在,合成時亦為奈米尺度大小的晶體,因此在升溫時「尺寸效應」將劇烈影響脫水行為及相變反應,且不同於其他黏土礦物,水鈉錳礦之金屬氧化態多元,可變化性大,然而有關粒徑大小對熱行為影響之研究卻相對缺乏,因此本研究以水鈉錳礦作為研究材料,進一步了解粒徑對其熱行為的影響,包含:脫水及相變反應,並使用主導動力學曲線模型(Master Kinetics Curve model,MKC)推測反應機制。
本研究使用氧化法(Oxidation method)搭配老化法(Aging),成功合成不同粒徑大小之水鈉錳礦(平均長軸 200 nm及 >1 µm),接著分別使用熱重分析儀(TGA)、熱膨脹儀(DIL)升溫至900°C,測量其連續的重量變化及體積變化,藉以推測反應溫度;並搭配X光粉末繞射儀(XRD)及掃描式電子顯微鏡(SEM)分別進行晶相及表面形貌分析,以確認階段性變化;除此之外,也使用主導動力學曲線模型(MKC),以電腦數值模擬的方式進行擬合,分析不同階段的反應動力學。 研究成果之主要貢獻可分為三個部分: 第一部分釐清了水鈉錳礦在大氣中升溫之階段性反應,過去文獻因分析儀器限制及環境因素,對水鈉錳礦相變之中間相眾說紛紜,而本研究透過使用不同熱分析儀器進行交叉比對後,發現其熱行為具有五個階段:(1) 100~400°C 脫水反應、(2) 500°C相變反應,產生2×2的管狀礦物Na0.2MnO2;(3) 約550~600°C時,相變為2×3之管狀礦物Mn0.4MnO2及Mn2O3;(4) 790~810°C時,變為複雜之管狀礦物Na0.44MnO2及Mn2O3;最後 (5) 在860~880°C時轉變成最為穩定的黑錳礦(Hausmannite,Mn3O4)。大氣條件下,水鈉錳礦隨著溫度上升形成鈉錳比(Na/Mn)逐漸上升的高氧化態管狀礦物,並伴隨著脫氧,產生氧化態較低的Mn2O3及Mn3O4。本研究發現在大氣中加熱,水鈉錳礦第一個相變產物為2×2的管狀礦物Na0.2MnO2,其因重量變化不明顯而常被前人研究忽略。 第二部分為發現水鈉錳礦之二步驟脫水反應,第一步驟脫水反應發生於110~130°C,造成重量變化大而體積收縮小,為脫去「層間水」所造成,且在MKC動力學擬合分析中視活化能39.6 kJ/mol,而第二步驟在170~190°C時發生,其重量變化小、體積收縮卻較劇烈,可能為「晶格水」散失所造成,視活化能相對較大,為42.3 kJ/mol。 第三部分整合不同分析儀器的結果,並提出「粒徑」對水鈉錳礦熱行為的影響,不同粒徑之水鈉錳礦在二步驟脫水行為中表現不同,且相變溫度亦有差異。粒徑較小之水鈉錳礦可能含有較多「晶格水」,而「層間水」較少,因此第一步驟脫層間水的反應較粒徑大之樣本緩和,而第二步驟脫晶格水反應則較明顯,且相變反應的溫度皆提早約20°C。因為在進行合成時,水鈉錳礦由水錳礦(Pyrochroite)經順構轉變(Topotactical Conversion)而來,其單位晶格由Mn(OH)6逐漸脫水形成MnO6,而粒徑小之樣本長晶時間較短,因此殘存較多(OH-),而粒徑大之樣本經老化過程,其晶格水(OH-)轉變為層間水。 以上為本研究之研究成果,確立了水鈉錳礦加溫後脫水及相變行為的反應歷程,並提出粒徑的影響範圍,期望以上研究結果能增進我們對於水鈉錳礦熱行為之瞭解,並對學術界及應用端有所幫助。 | zh_TW |
| dc.description.abstract | Birnessite [(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5 H2O] is one of the most common clay minerals, and it is a layer-structured manganese oxide consisting of MnO6 octahedral sheets with the interlayer space filled in cations and water molecules. Different from other clay minerals, the oxidation state of birnessite is variability, and due to its special layered structure and oxidation characteristics, birnessite becomes a potential application material. No matter in the nature form or synthesis sample, birnessite is often in very fine crystal or amorphous state, so the “small scale effect” will seriously affect the thermal behaviors. however, the research on the influence of particle size on thermal behavior of birnessite is relatively lacking. Thus, this study uses Birnessite as a research material to understand the relationship of particle size and thermal behavior.
In this study, we first use an oxidation method to synthesize birnessite powder of about 200 nm in diameter, and then aged it for 5 days to derive the larger sized sample which is about 1 µm. In order to understand the thermal behavior of the two different sized birnessite, thermogravimetric analysis (TGA) and a dilatometer were used to measure their weight and volume changes at various temperatures, and X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to determine their phases and morphologies. In addition, a computer simulation program of Master Kinetics Curve model (MKC) was used to analyze our data and to describe the kinetics of the phase transformation behaviors of birnessite. Generally, there are three main contributions of this research results. The first part: establishes the general thermal reaction of birnessite in the atmosphere. This study uses three analysis instruments to compare the result, and speculated that the thermal behavior under atmospheric conditions has 5 stage: (1) dehydrate before 400°C; (2) transform to 2x2 tunnel-structured Na0.2MnO2 at 500°C; (3) transform to 2x3 tunnel-structured Mn0.4MnO2 + Mn2O3 at around 550-600°C; (4) transform to Na0.44MnO2 + Mn2O3 at around 790-810°C; and finally (5) transform to Mn3O4 at 860-880°C. Therefore, this study found a 2x2 tunnel tunnel-structured Na0.2MnO2, which is often ignored due to insignificant weight change. The second part: founds the two-step dehydration reaction of birnessite. The first step of dehydration occurs at 110-130°C, resulting in large weight change and small volume shrinkage, which may be caused by removing the interlayer water. In the MKC dynamics fitting analysis, the apparent activation energy (Qa) is 39.6 kJ/mol; On the other hand, the second step occurs at higher temperature, around 170-190°C, the weight loss is small, which may be caused by lossing lattice water. The Qa is 42.3 kJ/mol, which means it needs more energy to removel the lattice water. The third part: integrated the influence of particle size on the thermal behavior of birnessite. The different sizes of birnessite have different performances in the two-step dehydration behavior, and the phase transition temperature also differs. Because of the Topotactical Conversion, there are more time to change lattice water to interlayer water in aging sample. So compare to the normal sample without aging, the aged birnessite has more interlayer water and less lattice water. Therefore, the reaction temperatures of the aged birnessite is about 20°C higher than that of the normal one. The above is the research results of the influence of particle size on the thermal behavior of birnessite. These results enhance our understanding of the thermal behaviors of birnessite, and will be useful in many practical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:05:01Z (GMT). No. of bitstreams: 1 ntu-108-R06224108-1.pdf: 5470794 bytes, checksum: 3c1dbeed9c5446abd9404543b325215a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 ii 致謝 iii 摘 要 iv Abstract vi 目錄 viii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 3 1.3 各章內容簡介 4 第二章 文獻回顧 5 2.1 層狀錳氧化物 5 2.1.1 層狀錳氧化物之分類 5 2.1.2 水鈉錳礦(Birnessite) 7 2.2 水鈉錳礦之合成 8 2.2.1 影響合成之變因 10 2.2.2 長晶過程 12 2.3 水鈉錳礦之熱行為 15 2.3.1 晶相變化 16 2.3.2 影響熱行為之參數 17 2.3.3 脫水行為 22 2.4 主導動力學曲線模型(Master Kinetics Curve, MKC) 24 第三章 實驗方法 26 3.1 儀器介紹 26 3.1.1 X光粉末繞射儀 (X-Ray Diffraction Analyzer) 26 3.1.2 高溫爐 28 3.1.3 熱重分析(Thermogravimetric analysis,TGA) 29 3.1.4 單壓型壓片機及模具 30 3.1.5 熱膨脹儀(Dilatometer) 31 3.1.6 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 32 3.2 實驗設計流程 33 3.3 細部實驗步驟 34 3.3.1 藥品資訊 34 3.3.2 合成步驟 34 3.3.3 合成參數設定 35 3.3.4 前處理 36 3.3.5 相對密度測定 36 3.3.6 加熱實驗 38 第四章 研究結果與討論 39 4.1 合成產物分析與討論 39 4.1.1 雙氧水體積 39 4.1.2 雙氧水濃度 41 4.1.3 老化時間 43 4.1.4 產物表面形態及相對成分分析 46 4.1.5 壓坯壓力及相對密度 48 4.2 熱實驗研究結果與討論 49 4.2.1 X光粉末繞射儀(XRD) 49 4.2.2 掃描式電子顯微鏡(SEM) 52 4.2.3 熱重分析(TGA) 55 4.2.4 熱膨脹儀分析(DIL) 64 4.2.5 綜合討論與小結 69 4.3 主導動力學曲線(MKC)之擬合分析 73 4.3.1 一般擬合 73 4.3.2 分峰擬合 74 4.3.3 綜合討論與小結 78 第五章 結論與建議 79 參考文獻 83 附錄A 礦物之JCPDS資料數據 91 附錄B 箱型爐爐內溫度與顯示器溫度紀錄 95 附錄C 氮氣中加熱XRD 96 附錄D MKC分峰數據 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水鈉錳礦 | zh_TW |
| dc.subject | 粒徑大小 | zh_TW |
| dc.subject | 熱行為 | zh_TW |
| dc.subject | 相轉變 | zh_TW |
| dc.subject | MKC | zh_TW |
| dc.subject | Birnessite | en |
| dc.subject | phase transformation | en |
| dc.subject | particle size | en |
| dc.subject | MKC | en |
| dc.subject | thermal behavior | en |
| dc.title | 不同粒徑大小水鈉錳礦之熱行為研究 | zh_TW |
| dc.title | Study on the thermal behaviors of Birnessite with different particle sizes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江威德,陳燕華,王玉瑞 | |
| dc.subject.keyword | 水鈉錳礦,粒徑大小,熱行為,相轉變,MKC, | zh_TW |
| dc.subject.keyword | Birnessite,thermal behavior,phase transformation,particle size,MKC, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201902014 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
