請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72735完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳青錫(Ching-Shyi Wu) | |
| dc.contributor.author | Jyy-Shiuan Tu | en |
| dc.contributor.author | 涂芷瑄 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:04:49Z | - |
| dc.date.available | 2022-08-27 | |
| dc.date.copyright | 2019-08-27 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-27 | |
| dc.identifier.citation | 1. A. S. Balajee and C. R. Geard (2004). 'Replication protein A and gamma-H2AX foci assembly is triggered by cellular response to DNA double-strand breaks.' Experimental Cell Research 300(2): 320-334.
2. K. Beishline and J. Azizkhan-Clifford (2014). 'Interplay between the cell cycle and double-strand break response in mammalian cells.' Methods Mol Biol 1170: 41-59. 3. M. Bermudez-Lopez, M. T. Villoria, M. Esteras, A. Jarmuz, J. Torres-Rosell, A. Clemente-Blanco and L. Aragon (2016). 'Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6.' Genes Dev 30(11): 1339-1356. 4. E. Braschi, R. Zunino and H. M. Mcbride (2009). 'MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission.' EMBO Rep 10(7): 748-754. 5. A. Carbia-Nagashima, J. Gerez, C. Perez-Castro, M. Paez-Pereda, S. Silberstein, G. K. Stalla, F. Holsboer and E. Arzt (2007). 'RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia.' Cell 131(2): 309-323. 6. M. M. Dawlaty, L. Malureanu, K. B. Jeganathan, E. Kao, C. Sustmann, S. Tahk, K. Shuai, R. Grosschedl and J. M. Van Deursen (2008). 'Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha.' Cell 133(1): 103-115. 7. H. Dou, C. Huang, T. Van Nguyen, L. S. Lu and E. T. Yeh (2011). 'SUMOylation and de-SUMOylation in response to DNA damage.' FEBS Lett 585(18): 2891-2896. 8. Y. Galanty, R. Belotserkovskaya, J. Coates, S. Polo, K. M. Miller and S. P. Jackson (2009). 'Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks.' Nature 462(7275): 935-939. 9. J. R. Gareau and C. D. Lima (2010). 'The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition.' Nat Rev Mol Cell Biol 11(12): 861-871. 10. G. Giglia-Mari, A. Zotter and W. Vermeulen (2011). 'DNA Damage Response.' Cold Spring Harbor Perspectives in Biology 3(1). 11. E. Gilistro, V. De Turris, M. Damizia, A. Verrico, S. Moroni, R. De Santis, A. Rosa and P. Lavia (2017). 'Importin-beta and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function.' Journal of Cell Science 130(15): 2564-2578. 12. J. D. Iglehart and D. P. Silver (2009). 'Synthetic lethality--a new direction in cancer-drug development.' N Engl J Med 361(2): 189-191. 13. S. P. Jackson and D. Durocher (2013). 'Regulation of DNA damage responses by ubiquitin and SUMO.' Mol Cell 49(5): 795-807. 14. J. Joseph, S. T. Liu, S. A. Jablonski, T. J. Yen and M. Dasso (2004). 'The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo.' Current Biology 14(7): 611-617. 15. L. Kabeche, H. D. Nguyen, R. Buisson and L. Zou (2018). 'A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.' Science 359(6371): 108-114. 16. A. Kinner, W. Q. Wu, C. Staudt and G. Iliakis (2008). 'gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin.' Nucleic Acids Research 36(17): 5678-5694. 17. A. Kumar, M. Mazzanti, M. Mistrik, M. Kosar, G. V. Beznoussenko, A. A. Mironov, M. Garre, D. Parazzoli, G. V. Shivashankar, G. Scita, J. Bartek and M. Foiani (2014). 'ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress.' Cell 158(3): 633-646. 18. F. Liu, N. Pore, M. Kim, K. R. Voong, M. Dowling, A. Maity and G. D. Kao (2006). 'Regulation of histone deacetylase 4 expression by the SP family of transcription factors.' Mol Biol Cell 17(2): 585-597. 19. S. Liu, S. O. Opiyo, K. Manthey, J. G. Glanzer, A. K. Ashley, C. Amerin, K. Troksa, M. Shrivastav, J. A. Nickoloff and G. G. Oakley (2012). 'Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress.' Nucleic Acids Res 40(21): 10780-10794. 20. A. Marechal and L. Zou (2013). 'DNA Damage Sensing by the ATM and ATR Kinases.' Cold Spring Harbor Perspectives in Biology 5(9). 21. A. Marechal and L. Zou (2015). 'RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response.' Cell Research 25(1): 9-23. 22. Y. Morita, C. Kanei-Ishii, T. Nomura and S. Ishii (2005). 'TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation.' Mol Biol Cell 16(11): 5433-5444. 23. J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng and E. Solomon (2009). 'The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress.' Nature 462(7275): 886-890. 24. E. Oricchio, C. Saladino, S. Iacovelli, S. Soddu and E. Cundari (2006). 'ATM is activated by default in mitosis, localizes at centrosomes and monitors mitotic spindle integrity.' Cell Cycle 5(1): 88-92. 25. A. Pichler, A. Gast, J. S. Seeler, A. Dejean and F. Melchior (2002). 'The nucleoporin RanBP2 has SUMO1 E3 ligase activity.' Cell 108(1): 109-120. 26. A. C. Porter and C. J. Farr (2004). 'Topoisomerase II: untangling its contribution at the centromere.' Chromosome Res 12(6): 569-583. 27. P. Sarangi and X. Zhao (2015). 'SUMO-mediated regulation of DNA damage repair and responses.' Trends Biochem Sci 40(4): 233-242. 28. J. Smith, L. M. Tho, N. Xu and D. A. Gillespie (2010). 'The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer.' Adv Cancer Res 108: 73-112. 29. W. Strzalka and A. Ziemienowicz (2011). 'Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation.' Ann Bot 107(7): 1127-1140. 30. S. Walde, K. Thakar, S. Hutten, C. Spillner, A. Nath, U. Rothbauer, S. Wiemann and R. H. Kehlenbach (2012). 'The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner.' Traffic 13(2): 218-233. 31. T. C. Walther, H. S. Pickersgill, V. C. Cordes, M. W. Goldberg, T. D. Allen, I. W. Mattaj and M. Fornerod (2002). 'The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import.' J Cell Biol 158(1): 63-77. 32. X. Zhao, T. Sternsdorf, T. A. Bolger, R. M. Evans and T. P. Yao (2005). 'Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications.' Mol Cell Biol 25(19): 8456-8464. 33. L. Cappadocia, A. Pichler and C. D. Lima (2015). 'Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase.' Nat Struct Mol Biol 22(12): 968-975. 34. Y. Chu and X. Yang (2011). 'SUMO E3 ligase activity of TRIM proteins.' Oncogene 30(9): 1108-1116. 35. M. T. Dos Santos, D. M. Trindade, A. Goncalves Kde, G. C. Bressan, F. Anastassopoulos, J. A. Yunes and J. Kobarg (2011). 'Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.' Mol Biosyst 7(1): 180-193. 36. J. H. Guervilly, A. Takedachi, V. Naim, S. Scaglione, C. Chawhan, Y. Lovera, E. Despras, I. Kuraoka, P. Kannouche, F. Rosselli and P. H. Gaillard (2015). 'The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability.' Mol Cell 57(1): 123-137. 37. Y. Ikeuchi, S. Dadakhujaev, A. S. Chandhoke, M. A. Huynh, A. Oldenborg, M. Ikeuchi, L. Deng, E. J. Bennett, J. W. Harper, A. Bonni and S. Bonni (2014). 'TIF1gamma protein regulates epithelial-mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1.' J Biol Chem 289(36): 25067-25078. 38. Y. Oh and K. C. Chung (2013). 'UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131.' J Biol Chem 288(13): 9102-9111. 39. H. Qiao, H. B. Prasada Rao, Y. Yang, J. H. Fong, J. M. Cloutier, D. C. Deacon, K. E. Nagel, R. K. Swartz, E. Strong, J. K. Holloway, P. E. Cohen, J. Schimenti, J. Ward and N. Hunter (2014). 'Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination.' Nat Genet 46(2): 194-199. 40. K. A. Wilkinson and J. M. Henley (2010). 'Mechanisms, regulation and consequences of protein SUMOylation.' Biochem J 428(2): 133-145. 41. D. Yamashita, T. Moriuchi, T. Osumi and F. Hirose (2016). 'Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2alpha' J Biol Chem 291(22): 11619-11634 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72735 | - |
| dc.description.abstract | SUMOylation 是一種蛋白質後轉譯修飾,小泛素修飾分子蛋白會經由SUMO E1、E2和E3的協助而結合到目標蛋白質上,進而調控蛋白質的穩定性、活性、蛋白質與蛋白質之間的相互作用。小泛素修飾分子蛋白對於細胞內的調控是非常重要的,小泛素修飾分子能夠調控許多細胞內的功能,像是轉錄、複製、染色體分離和DNA的修復。當細胞受到傷害後會啟動一連串的機制去維持基因的完整性,這些機制稱為DNA損傷反應 ,簡稱DDR。DDR會受到許多後轉譯修飾的調節而控制參與在DDR內的蛋白質的活化。研究發現有非常多參與在DDR內的蛋白質會被小泛素修飾分子修飾,像是RPA、ATRIP和BRCA1等等…,但是這些蛋白質的E3 ligase只有少數有被報導參與在DNA損傷反應。是否其他的E3 ligase亦參與調控龐大又複雜的DDR則成了未解的課題。我經由干擾RNA快篩發現了RanBP2,這個細胞核孔上的蛋白質,會影響ATR-Chk1 訊息路徑的活化。在我的實驗中,我發現在不同的DNA損傷的情況下,沈默 RanBP2表現會顯著的減弱ATR-Chk1 訊息路徑的磷酸化而非ATM-Chk2 訊息路徑,但是細胞的S phase比例 、DNA合成比例和雙股斷裂的形成並未顯著地受到影響。免疫螢光染色與蛋白質西方墨點法分析顯示γH2AX和RPA的焦點形成與蛋白質總量,沒有因為缺乏RanBP2而有顯著的減少。除此之外,我也確認了RanBP2不是經由改變其他參與在ATR-Chk1訊息路徑的蛋白質的表現量或是在細胞核內的數量來影響ATR-Chk1 訊息路徑。由於ATR-Chk1 訊息路徑中最上游的蛋白質為ATR,而缺乏RanBP2也有看到ATR的活化減少,因此我測試ATR是否會與RanBP2有相互作用。結果顯示,在細胞週期間期時,並未觀察到RanBP2與ATR的相互作用,但在有絲分裂時,RanBP2與ATR有相互作用。以上結果暗示,RanBP2很有可能是經由與ATR相互作用而去影響ATR-Chk1訊息路徑,但是RanBP2是否是經由SUMOylation的方式去影響ATR-Chk1 訊息路徑,或者RanBP2是否會幫助ATR的小泛素修飾分子修飾,還需要更深入的探討。 | zh_TW |
| dc.description.abstract | SUMOylation is one of post-translational modification, and SUMO conjugation to substrates occurs through a process involving an E1 activating enzyme, an E2 conjugating enzyme and an E3 protein ligase. Protein modification by SUMOylation can change the stability and activity of proteins and alter protein-protein interactions. Protein SUMOylation is important for several cellular processes, including transcription, DNA replication, chromosome segregation and DNA repair. In response to DNA damage, cells activate a series of mechanisms to protect genomic integrity termed the DNA damage response (DDR). Several types of post-translational modifications are known to regulate the DDR. Previous studies have shown that hundreds of the DDR proteins including RPA, ATRIP, and BRCA1 are SUMO conjugated in response to DNA damage. However, only few SUMO E3 ligases have been implicated in the DDR. It is not clear if other SUMO E3 ligases are also involved in the DDR. With a small scale siRNA screen, I find that RanBP2, a component of nuclear pore complex, is important for activation of the ATR-Chk1 signaling pathway. I find that knockdown of RanBP2 drastically reduces damage-induced phosphorylation of the ATR-Chk1 pathway but not the ATM-Chk2 pathway. Knockdown of RanBP2 does not significantly alter cell cycle progression, DNA synthesis, and formation of damage-induced DNA double-stranded breaks. Immunofluorescence imaging and Western blotting show that the foci formation and protein levels of γH2AX and RPA are not affected. Moreover, levels of several key factors of the ATR-Chk1 pathway remain unchanged after knockdown of RanBP2. Given the activation of ATR is the upstream event in the ATR-Chk1 pathway, I test whether RanBP2 interacts and regulates ATR directly. Immunoprecipitation of RanBP2 shows that ATR associates with RanBP2 during mitosis but not in interphase. The result suggests RanBP2 may affect the ATR-Chk1 pathway by interacting with ATR. However, it needs more work to test if RanBP2 affects the ATR-Chk1 pathway via its SUMO E3 function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:04:49Z (GMT). No. of bitstreams: 1 ntu-108-R06443002-1.pdf: 5724388 bytes, checksum: 863f6faae987f0cf613b5d9e727b1743 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 - i
誌謝 - ii 縮寫表(Abbreviation) - iii-iv 中文摘要 - v 英文摘要(Abstract) - vi 介紹(Introduction) - 1-4 目標(Aim) - 5 材料和方法(Materials and Methods)- 6-15 結果(Results) - 16-21 討論(Discussions) - 22-23 圖表(Figures) - 24-65 參考文獻(References) - 66-70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小泛素修飾分子 | zh_TW |
| dc.subject | DNA損傷反應 | zh_TW |
| dc.subject | RanBP2 | en |
| dc.subject | SUMOylation | en |
| dc.subject | DNA damage response | en |
| dc.title | SUMO E3 連接酶 RanBP2在DNA損害反應中之角色 | zh_TW |
| dc.title | The role of SUMO E3 ligase RanBP2 in the DNA damage response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),林敬哲(Jing-Jer Lin),朱雪萍(Hsueh-Ping Chu) | |
| dc.subject.keyword | 小泛素修飾分子,DNA損傷反應, | zh_TW |
| dc.subject.keyword | RanBP2,SUMOylation,DNA damage response, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201902047 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
