請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
| dc.contributor.author | Hsuan-Yi Peng | en |
| dc.contributor.author | 彭璿伊 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:04:36Z | - |
| dc.date.available | 2024-08-06 | |
| dc.date.copyright | 2019-08-06 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-29 | |
| dc.identifier.citation | 1. Marmur, A., The lotus effect: Superhydrophobicity and metastability. Langmuir 2004, 20 (9), 3517-3519.
2. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8. 3. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388 (6641), 431-432. 4. Skelley, A. M.; Kirak, O.; Suh, H.; Jaenisch, R.; Voldman, J., Microfluidic control of cell pairing and fusion. Nature Methods 2009, 6 (2), 147-152. 5. Mondal, B.; Eain, M. M. G.; Xu, Q. F.; Egan, V. M.; Punch, J.; Lyons, A. M., Design and fabrication of a hybrid superhydrophobic-hydrophilic surface that exhibits stable dropwise condensation. ACS Applied Materials & Interfaces 2015, 7 (42), 23575-23588. 6. Tonooka, K.; Kikuchi, N., Super-hydrophilic and solar-heat-reflective coatings for smart windows. Thin Solid Films 2013, 532, 147-150. 7. Busscher, H. J.; Vanpelt, A. W. J.; Deboer, P.; Dejong, H. P.; Arends, J., The effect of surface roughening of polymers on measured contact angles of liquids. Colloids and Surfaces 1984, 9 (4), 319-331. 8. Drelich, J.; Chibowski, E.; Meng, D. D.; Terpilowski, K., Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7 (21), 9804-9828. 9. Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 1998, 74, 69-117. 10. Guo, C. W.; Wang, S. T.; Liu, H.; Feng, L.; Song, Y. L.; Jiang, L., Wettability alteration of polymer surfaces produced by scraping. Journal of Adhesion Science and Technology 2008, 22 (3-4), 395-402. 11. Law, K. Y., Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. Journal of Physical Chemistry Letters 2014, 5 (4), 686-688. 12. Young, T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 1805, 95, 65-87. 13. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 1936, 28, 988-994. 14. Cassie, A. B. D.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40, 0546-0550. 15. Ishino, C.; Okumura, K.; Quere, D., Wetting transitions on rough surfaces. Europhysics Letters 2004, 68 (3), 419-425. 16. Ishino, C.; Okumura, K., Wetting transitions on textured hydrophilic surfaces. European Physical Journal E 2008, 25 (4), 415-424. 17. Marmur, A., Contact angle hysteresis on heterogeneous smooth surfaces. Journal of Colloid and Interface Science 1994, 168 (1), 40-46. 18. Marmur, A., Equilibrium contact angles: Theory and measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 116 (1-2), 55-61. 19. Marmur, A., Contact angle hysteresis on heterogeneous smooth surfaces: Theoretical comparison of the captive bubble and drop methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 136 (1-2), 209-215. 20. Rodriguez-Valverde, M. A.; Ruiz-Cabello, F. J. M.; Cabrerizo-Vilchez, M. A., Wetting on axially-patterned heterogeneous surfaces. Advances in Colloid and Interface Science 2008, 138 (2), 84-100. 21. Promraksa, A.; Chuang, Y. C.; Chen, L. J., Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. Journal of Colloid and Interface Science 2014, 418, 8-19. 22. Marmur, A., Thermodynamic aspects of contact-angle hysteresis. Advances in Colloid and Interface Science 1994, 50, 121-141. 23. de Gennes, P. G., Wetting: Statics and dynamics. Reviews of Modern Physics 1985, 57 (3), 827-863. 24. Forsberg, P. S.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J., Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 2010, 26 (2), 860-5. 25. Berg, J. M.; Eriksson, L. G. T.; Claesson, P. M.; Borve, K. G. N., 3-component Langmuir-Blodgett-films with a controllable degree of polarity. Langmuir 1994, 10 (4), 1225-1234. 26. Yoon, R. H.; Flinn, D. H.; Rabinovich, Y. I., Hydrophobic interactions between dissimilar surfaces. Journal of Colloid and Interface Science 1997, 185 (2), 363-370. 27. Law, K.-Y., Water–surface interactions and definitions for hydrophilicity, hydrophobicity and superhydrophobicity. Pure and Applied Chemistry 2015, 87 (8). 28. Bico, J.; Thiele, U.; Quere, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206 (1-3), 41-46. 29. Courbin, L.; Denieul, E.; Dressaire, E.; Roper, M.; Ajdari, A.; Stone, H. A., Imbibition by polygonal spreading on microdecorated surfaces. Nature Materials 2007, 6 (9), 661-4. 30. Semprebon, C.; Forsberg, P.; Priest, C.; Brinkmann, M., Pinning and wicking in regular pillar arrays. Soft Matter 2014, 10 (31), 5739-48. 31. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318 (5849), 426-430. 32. Jiang, J. H.; Zhu, L. P.; Zhu, L. J.; Zhu, B. K.; Xu, Y. Y., Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 2011, 27 (23), 14180-14187. 33. d'Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T., Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials. Angewandte Chemie-International Edition 2009, 48 (22), 3914-3921. 34. Wei, Q.; Zhang, F. L.; Li, J.; Li, B. J.; Zhao, C. S., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry 2010, 1 (9), 1430-1433. 35. Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H., Mussel-inspired adhesives and coatings. Annual Review of Materials Research 2011, 41, 99-132. 36. Cheng, C.; Li, S.; Zhao, W. F.; Wei, Q.; Nie, S. Q.; Sun, S. D.; Zhao, C. S., The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science 2012, 417, 228-236. 37. Jun, D. R.; Moon, S. K.; Choi, S. W., Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces 2014, 121, 395-399. 38. Chuah, Y. J.; Koh, Y. T.; Lim, K.; Menon, N. V.; Wu, Y.; Kang, Y., Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Scientific Reports 2015, 5, 18162. 39. Jun, D. R.; Choi, Y. R.; Kang, R. H.; Choi, S. W., Polydimethylsiloxane fluidic device with polydopamine-coated inner channel for production of uniform droplets. Macromolecular Materials and Engineering 2016, 301 (9), 1044-1048. 40. Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M. J.; Freeman, B. D.; Park, H. B., Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Applied Materials & Interfaces 2013, 5 (2), 233-238. 41. Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P., Su-8: A low-cost negative resist for mems. Journal of Micromechanics and Microengineering 1997, 7 (3), 121-124. 42. del Campo, A.; Greiner, C., Su-8: A photoresist for high-aspect-ratio and 3d submicron lithography. Journal of Micromechanics and Microengineering 2007, 17 (6), R81-R95. 43. Jo, B. H.; Van Lerberghe, L. M.; Motsegood, K. M.; Beebe, D. J., Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Microelectromechanical Systems 2000, 9 (1), 76-81. 44. Sollier, E.; Murray, C.; Maoddi, P.; Di Carlo, D., Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip 2011, 11 (22), 3752-3765. 45. Bartolo, D.; Degre, G.; Nghe, P.; Studer, V., Microfluidic stickers. Lab on a Chip 2008, 8 (2), 274-279. 46. Hung, L. H.; Lin, R.; Lee, A. P., Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Lab on a Chip 2008, 8 (6), 983-987. 47. Levache, B.; Azioune, A.; Bourrel, M.; Studer, V.; Bartolo, D., Engineering the surface properties of microfluidic stickers. Lab on a Chip 2012, 12 (17), 3028-3031. 48. Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J. J. D.; Toniazzo, V.; Ruch, D., Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir 2011, 27 (6), 2819-2825. 49. Ball, V.; Del Frari, D.; Toniazzo, V.; Ruch, D., Kinetics of polydopamine film deposition as a function of ph and dopamine concentration: Insights in the polydopamine deposition mechanism. Journal of Colloid and Interface Science 2012, 386, 366-372. 50. Chien, H. W.; Kuo, W. H.; Wang, M. J.; Tsai, S. W.; Tsai, W. B., Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Langmuir 2012, 28 (13), 5775-5782. 51. Yeh, K. Y.; Chen, L. J.; Chang, J. Y., Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir 2008, 24 (1), 245-251. 52. Chuang, Y. C.; Chu, C. K.; Lin, S. Y.; Chen, L. J., Evaporation of water droplets on soft patterned surfaces. Soft Matter 2014, 10 (19), 3394-3403. 53. Seemann, R.; Brinkmann, M.; Herminghaus, S.; Khare, K.; Law, B. M.; McBride, S.; Kostourou, K.; Gurevich, E.; Bommer, S.; Herrmann, C.; Michler, D., Wetting morphologies and their transitions in grooved substrates. Journal of Physics-Condensed Matter 2011, 23 (18). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72726 | - |
| dc.description.abstract | 本研究以平坦表面上的前進角作為指標,定量探討了在同一系統下,親水表面及疏水表面的定義。此研究的實驗基材選用具有規則方柱陣列結構的聚多巴胺塗覆之NOA81表面。藉由改變NOA81在多巴胺溶液中的塗覆時間,可以調控基材的固有接觸角。實驗中,三組NOA81基材的固體覆蓋率分別維持定值在0.479±0.020、0.270±0.018和0.147±0.012,並藉由提高結構粗糙度以觀察水滴在結構表面上濕潤狀態的改變。此研究中,水滴的濕潤行為被分為三種狀態:Wenzel狀態、Cassie狀態,以及Cassie浸潤狀態。水滴在實驗中的濕潤狀態轉換也嘗試與三種分別根據熱力學觀點、幾何關係,和能量最小化觀點的濕潤轉換準則進行比較。
本研究結果中,藉由改變多巴胺塗覆時間及結構參數的製程方式,成功的調控出了前進角從22度到158度的廣泛區間。另外,由本研究的實驗結果可歸納出,當平坦表面上的前進角大於76o±4o時,Wenzel狀態到Cassie狀態的濕潤狀態轉換可以隨著粗糙度的增加而被觀察到,因此在此角度下的平坦表面可以被歸類為「疏水」表面。另一方面,若平坦表面上的前進角小於56o±4o,粗糙度的增加可以使水滴從Wenzel 狀態轉變到Cassie浸潤狀態,因此在此角度下的平坦表面則可以被定義為「親水」表面。另外,本研究也根據實驗結果,提出了能夠發生「超親水」現象的條件。而至於當平坦表面上的前進角介於56o±4o和76o±4o之間時,隨著粗糙度的增加,水滴即便在很高的粗糙度時 (r>4),仍維持在Wenzel 狀態,並沒有濕潤現象的轉換能夠被觀察到,因此我們歸納前進角界於此範圍的平坦表面時,處在一個親疏水性的介穩地帶。 | zh_TW |
| dc.description.abstract | In order to quantitatively distinguish between hydrophobicity and hydrophilicity, advancing contact angle of a water droplet on the flat surface is chosen as an index. The polydopamine-coated NOA81 surfaces with regular square pillar arrays are utilized as the model substrates. The intrinsic contact angles of NOA81 surfaces are varied by dopamine coating time. Also, the roughness of the substrate is adjusted while the solid fraction for each series of structures is fixed at 0.479±0.020, 0.270±0.01 or 0.147±0.012. Besides, the wetting behavior of a water droplet is observed on the patterned surfaces and classified into three wetting states: Wenzel state, Cassie state, and Cassie impregnating wetting state. The wetting transition in this study is compared with different criteria, which are based on the viewpoints of thermodynamics, geometric relationships, and energy minimization.
In this study, a wide range of advancing contact angle, from 22o to 158o, can be successfully tuned on the NOA81 substrates by varying dopamine coating time and structure parameters. Concluded by the experiments, if the advancing contact angle θ_A on the flat surface is larger than 76o±4o, the transition from Wenzel state to Cassie state can be observed when the roughness increases. Therefore, it is classified as a hydrophobic surface. On the other hand, when θ_A on the flat surface is smaller than 56o±4o, the transition from Wenzel state to Cassie impregnating wetting state is observed with the increasing roughness. Thus, the surface with θ_A < 56o±4o can be defined as a hydrophilic surface. A condition for the occurrence of superhydrophilic behavior is also proposed in this study. For the flat surface with 56o±4o < θ_A < 76o±4o, a water droplet keeps at Wenzel state and no transition can be observed. As a result, it is classified as a hydrophobic/hydrophilic metastable zone | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:04:36Z (GMT). No. of bitstreams: 1 ntu-108-R06524005-1.pdf: 4954379 bytes, checksum: 0a1bab440983cae2f1983c02427ab171 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xv Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Wetting phenomena and contact angle 3 2.1.1 Wetting behavior of ideal surfaces 3 2.1.2 Wetting behaviors of non-ideal surfaces 4 2.1.3 Advancing / Receding contact angle and contact angle hysteresis 6 2.2 Definition of hydrophilicity and hydrophobicity 9 2.3 Criteria of wetting state transition 15 2.3.1 Critical contact angle 15 2.3.2 Geometric relationship 16 2.3.3 Numerical energy minimization 18 2.4 Hydrophilicity modification by polydopamine coating 20 Chapter 3 Experimental Method 23 3.1 Materials 23 3.2 Experimental Apparatuses 24 3.3 Experimental Procedure 25 3.3.1 Fabrication of microstructure (regular arrays of square pillars) patterned surfaces 25 3.3.2 Surface hydrophilicity adjusted by dopamine treatment 29 3.3.3 Wetting state and contact angle measurement 31 Chapter 4 Results and Discussion 33 4.1 Hydrophilicity modification on flat surfaces 33 4.1.1 Polydopamine-coated flat PDMS substrates 33 4.1.2 Different materials with polydopamine coating 38 4.1.3 Polydopamine-coated flat NOA81 substrates 39 4.2. Microstructure surface morphology adjustment 42 4.2.1 The specifications of patterned NOA81 substrates 42 4.2.2 The advancing/receding contact angle and the droplet wetting states of patterned NOA81 surfaces 45 4.3 Hydrophilicity modification on patterned NOA81 surfaces 48 4.3.1 Surface morphologies of polydopamine-coated patterned NOA81 surfaces 48 4.3.2 The advancing contact angles and the droplet wetting states of patterned PDA-c-NOA81 surfaces with different hydrophilicities 52 4.3.3 Comprehensive discussion 65 Chapter 5 Conclusion 69 REFERENCES 71 APPENDIX 77 | |
| dc.language.iso | en | |
| dc.subject | 親水 | zh_TW |
| dc.subject | 疏水 | zh_TW |
| dc.subject | 方柱 | zh_TW |
| dc.subject | 聚多巴胺 | zh_TW |
| dc.subject | 微結構表面 | zh_TW |
| dc.subject | 濕潤狀態轉換 | zh_TW |
| dc.subject | 前進角 | zh_TW |
| dc.subject | hydrophilicity | en |
| dc.subject | hydrophobicity | en |
| dc.subject | advancing contact angle | en |
| dc.subject | polydopamine | en |
| dc.subject | wetting state transition | en |
| dc.subject | square pillar arrays | en |
| dc.subject | micro-patterned surface | en |
| dc.title | 以水滴之前進角來區分親水與疏水表面 | zh_TW |
| dc.title | Quantitative Definition of Hydrophilicity and
Hydrophobicity by Advancing Contact Angle of Water | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林析右(Shi-Yow Lin),蔡瑞瑩(Ruey-Yug Tsay) | |
| dc.subject.keyword | 親水,疏水,前進角,聚多巴胺,微結構表面,方柱,濕潤狀態轉換, | zh_TW |
| dc.subject.keyword | hydrophilicity,hydrophobicity,advancing contact angle,polydopamine,micro-patterned surface,square pillar arrays,wetting state transition, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU201901861 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
