請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72720完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王致恬 | |
| dc.contributor.author | Ni-Yen Yu | en |
| dc.contributor.author | 余妮晏 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:04:26Z | - |
| dc.date.available | 2024-07-31 | |
| dc.date.copyright | 2019-07-31 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-29 | |
| dc.identifier.citation | Arraud, N., R. Linares, S. Tan, C. Gounou, J.M. Pasquet, S. Mornet, and A.R. Brisson. 2014. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. Journal of thrombosis and haemostasis : JTH. 12:614-627.
Awasthi, A., B. Ramachandran, S. Ahmed, E. Benito, Y. Shinoda, N. Nitzan, A. Heukamp, S. Rannio, H. Martens, J. Barth, K. Burk, Y.T. Wang, A. Fischer, and C. Dean. 2019. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science (New York, N.Y.). 363:eaav1483. Bahrini, I., J.H. Song, D. Diez, and R. Hanayama. 2015. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep. 5:7989. Bellingham, S.A., B.M. Coleman, and A.F. Hill. 2012. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic acids research. 40:10937-10949. Brown, H., B. Meister, J. Deeney, B.E. Corkey, S.N. Yang, O. Larsson, C.J. Rhodes, S. Seino, P.O. Berggren, and G. Fried. 2000. Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis. Diabetes. 49:383-391. Butz, S., R. Fernandez-Chacon, F. Schmitz, R. Jahn, and T.C. Sudhof. 1999. The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. The Journal of biological chemistry. 274:18290-18296. Chapman, E.R. 2008. How Does Synaptotagmin Trigger Neurotransmitter Release? Annual Review of Biochemistry. 77:615-641. Chernomordik, L.V., and M.M. Kozlov. 2003. Protein-Lipid Interplay in Fusion and Fission of Biological Membranes. Annual Review of Biochemistry. 72:175-207. Chernyshev, V.S., R. Rachamadugu, Y.H. Tseng, D.M. Belnap, Y. Jia, K.J. Branch, A.E. Butterfield, L.F. Pease, 3rd, P.S. Bernard, and M. Skliar. 2015. Size and shape characterization of hydrated and desiccated exosomes. Analytical and bioanalytical chemistry. 407:3285-3301. Craxton, M. 2010. A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology. BMC genomics. 11:37. Dean, C., F.M. Dunning, H. Liu, E. Bomba-Warczak, H. Martens, V. Bharat, S. Ahmed, and E.R. Chapman. 2012. Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen. Molecular biology of the cell. 23:1715-1727. Desai, R.C., B. Vyas, C.A. Earles, J.T. Littleton, J.A. Kowalchyck, T.F. Martin, and E.R. Chapman. 2000. The C2B domain of synaptotagmin is a Ca(2+)-sensing module essential for exocytosis. The Journal of cell biology. 150:1125-1136. Dhara, M., A. Yarzagaray, Y. Schwarz, S. Dutta, C. Grabner, P.K. Moghadam, A. Bost, C. Schirra, J. Rettig, K. Reim, N. Brose, R. Mohrmann, and D. Bruns. 2014. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. The Journal of cell biology. 204:1123-1140. Emmanouilidou, E., K. Melachroinou, T. Roumeliotis, S.D. Garbis, M. Ntzouni, L.H. Margaritis, L. Stefanis, and K. Vekrellis. 2010. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30:6838-6851. Essen, L.O., O. Perisic, D.E. Lynch, M. Katan, and R.L. Williams. 1997. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1. Biochemistry. 36:2753-2762. Fader, C.M., D.G. Sanchez, M.B. Mestre, and M.I. Colombo. 2009. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochimica et biophysica acta. 1793:1901-1916. Gould, S.J., and G. Raposo. 2013. As we wait: coping with an imperfect nomenclature for extracellular vesicles. Journal of extracellular vesicles. 2. Grimberg, E., Z. Peng, I. Hammel, and R. Sagi-Eisenberg. 2003. Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. Journal of Cell Science. 116:145-154. Gupta, A., and L. Pulliam. 2014. Exosomes as mediators of neuroinflammation. Journal of neuroinflammation. 11:68. Ha, D., N. Yang, and V. Nadithe. 2016. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta pharmaceutica Sinica. B. 6:287-296. Henne, W.M., H. Stenmark, and S.D. Emr. 2013. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harbor perspectives in biology. 5. Hoshino, D., K.C. Kirkbride, K. Costello, E.S. Clark, S. Sinha, N. Grega-Larson, M.J. Tyska, and A.M. Weaver. 2013. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell reports. 5:1159-1168. Hurley, J.H. 2015. ESCRTs are everywhere. The EMBO journal. 34:2398-2407. Hurwitz, S.N., M.M. Conlon, M.A. Rider, N.C. Brownstein, and D.G. Meckes, Jr. 2016. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. Journal of extracellular vesicles. 5:31295. Hurwitz, S.N., D. Nkosi, M.M. Conlon, S.B. York, X. Liu, D.C. Tremblay, and D.G. Meckes, Jr. 2017. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-kappaB Signaling. Journal of virology. 91. Jackson, M.B., and E.R. Chapman. 2008. The fusion pores of Ca2+ -triggered exocytosis. Nature structural & molecular biology. 15:684-689. Jorgensen, E.M., E. Hartwieg, K. Schuske, M.L. Nonet, Y. Jin, and H.R. Horvitz. 1995. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature. 378:196-199. Koh, T.W., and H.J. Bellen. 2003. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends in neurosciences. 26:413-422. Kowal, J., G. Arras, M. Colombo, M. Jouve, J.P. Morath, B. Primdal-Bengtson, F. Dingli, D. Loew, M. Tkach, and C. Thery. 2016. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America. 113:E968-977. Kucharzewska, P., H.C. Christianson, J.E. Welch, K.J. Svensson, E. Fredlund, M. Ringner, M. Morgelin, E. Bourseau-Guilmain, J. Bengzon, and M. Belting. 2013. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proceedings of the National Academy of Sciences of the United States of America. 110:7312-7317. Lachenal, G., K. Pernet-Gallay, M. Chivet, F.J. Hemming, A. Belly, G. Bodon, B. Blot, G. Haase, Y. Goldberg, and R. Sadoul. 2011. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and cellular neurosciences. 46:409-418. Martinez, I., S. Chakrabarti, T. Hellevik, J. Morehead, K. Fowler, and N.W. Andrews. 2000. Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. The Journal of cell biology. 148:1141-1149. Matthew, W.D., L. Tsavaler, and L.F. Reichardt. 1981. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. The Journal of cell biology. 91:257-269. Mizuta, M., N. Inagaki, Y. Nemoto, S. Matsukura, M. Takahashi, and S. Seino. 1994. Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. The Journal of biological chemistry. 269:11675-11678. Moghadam, P.K., and M.B. Jackson. 2013. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Frontiers in endocrinology. 4:124. Monterrat, C., F. Grise, M.N. Benassy, A. Hemar, and J. Lang. 2007. The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochemistry and cell biology. 127:625-632. Morita, E., V. Sandrin, H.Y. Chung, S.G. Morham, S.P. Gygi, C.K. Rodesch, and W.I. Sundquist. 2007. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. The EMBO journal. 26:4215-4227. Nicholls, D.G. 1994. Proteins, Transmitters, and Synapses. Blackwell Scientific Publications. Ostrowski, M., N.B. Carmo, S. Krumeich, I. Fanget, G. Raposo, A. Savina, C.F. Moita, K. Schauer, A.N. Hume, R.P. Freitas, B. Goud, P. Benaroch, N. Hacohen, M. Fukuda, C. Desnos, M.C. Seabra, F. Darchen, S. Amigorena, L.F. Moita, and C. Thery. 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature cell biology. 12:19-30; sup pp 11-13. Peinado, H., M. Aleckovic, S. Lavotshkin, I. Matei, B. Costa-Silva, G. Moreno-Bueno, M. Hergueta-Redondo, C. Williams, G. Garcia-Santos, C. Ghajar, A. Nitadori-Hoshino, C. Hoffman, K. Badal, B.A. Garcia, M.K. Callahan, J. Yuan, V.R. Martins, J. Skog, R.N. Kaplan, M.S. Brady, J.D. Wolchok, P.B. Chapman, Y. Kang, J. Bromberg, and D. Lyden. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine. 18:883-891. Raposo, G., and W. Stoorvogel. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology. 200:373-383. Rupert, D.L., G.V. Shelke, G. Emilsson, V. Claudio, S. Block, C. Lasser, A. Dahlin, J.O. Lotvall, M. Bally, V.P. Zhdanov, and F. Hook. 2016. Dual-Wavelength Surface Plasmon Resonance for Determining the Size and Concentration of Sub-Populations of Extracellular Vesicles. Analytical chemistry. Söllner, T., S.W. Whiteheart, M. Brunner, H. Erdjument-Bromage, S. Geromanos, P. Tempst, and J.E. Rothman. 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature. 362:318. Sagi-Eisenberg, R. 2007. The mast cell: where endocytosis and regulated exocytosis meet. Immunological reviews. 217:292-303. Savina, A., M. Furlan, M. Vidal, and M.I. Colombo. 2003. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. The Journal of biological chemistry. 278:20083-20090. Schiavo, G., G. Stenbeck, J.E. Rothman, and T.H. Sollner. 1997. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proceedings of the National Academy of Sciences of the United States of America. 94:997-1001. Sudhof, T.C. 2002. Synaptotagmins: why so many? The Journal of biological chemistry. 277:7629-7632. Sun, D., X. Zhuang, X. Xiang, Y. Liu, S. Zhang, C. Liu, S. Barnes, W. Grizzle, D. Miller, and H.G. Zhang. 2010. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular therapy : the journal of the American Society of Gene Therapy. 18:1606-1614. Sutton, R.B., B.A. Davletov, A.M. Berghuis, T.C. Sudhof, and S.R. Sprang. 1995. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 80:929-938. Sutton, R.B., J.A. Ernst, and A.T. Brunger. 1999. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. The Journal of cell biology. 147:589-598. Sutton, R.B., D. Fasshauer, R. Jahn, and A.T. Brunger. 1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 395:347-353. Turturici, G., R. Tinnirello, G. Sconzo, and F. Geraci. 2014. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. American journal of physiology. Cell physiology. 306:C621-633. Vrljic, M., P. Strop, J.A. Ernst, R.B. Sutton, S. Chu, and A.T. Brunger. 2010. Molecular mechanism of the synaptotagmin–SNARE interaction in Ca2+-triggered vesicle fusion. Nature Structural &Amp; Molecular Biology. 17:325. Weber, T., B.V. Zemelman, J.A. McNew, B. Westermann, M. Gmachl, F. Parlati, T.H. Söllner, and J.E. Rothman. 1998. SNAREpins: Minimal Machinery for Membrane Fusion. Cell. 92:759-772. Wu, X.S., B.D. McNeil, J. Xu, J. Fan, L. Xue, E. Melicoff, R. Adachi, L. Bai, and L.G. Wu. 2009. Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nature neuroscience. 12:1003-1010. Wu, Z., S. Thiyagarajan, B. O'Shaughnessy, and E. Karatekin. 2017. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Frontiers in molecular neuroscience. 10:315. Xie, Z., J. Long, J. Liu, Z. Chai, X. Kang, and C. Wang. 2017. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Frontiers in molecular neuroscience. 10:47. Zaborowski, M.P., L. Balaj, X.O. Breakefield, and C.P. Lai. 2015. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 65:783-797. Zappulli, V., K.P. Friis, Z. Fitzpatrick, C.A. Maguire, and X.O. Breakefield. 2016. Extracellular vesicles and intercellular communication within the nervous system. The Journal of clinical investigation. 126:1198-1207. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72720 | - |
| dc.description.abstract | 胞外體 (Extracellular vesicles, EVs) 為具有脂質雙層膜構造且可被細胞釋放的顆粒,並且根據其生成與釋放方式分成不同亞型。胞外體內部已知包含許多核酸、脂質與蛋白質,可以反映出細胞的生理狀態,因此胞外體又被稱為細胞間的溝通者。先前研究指出,胞外體的釋放是藉由鈣離子的調控,此種模式和鈣離子主導的囊泡胞吐作用相似。然而,目前並不清楚調控鈣離子主導的胞外體釋放的分子機制。鈣離子突觸結合蛋白 (Synaptotagmins, Syts) 目前已有17種不同亞型在哺乳動物中被發現,並且已知Syts在鈣離子主導的胞吐作用中藉由5個鈣離子與其結合位C2AB結合可扮演感測器的角色。其中第三型鈣離子突觸結合蛋白(Syt III)為已知特別具有6個鈣離子結合位的亞型,藉由鈣離子結合位可調控胞吐作用。並且,在本實驗室先前的研究中,我們過量表現Syt III在PC12細胞中,比較野生型 (wild-type Syt III) 與降低鈣離子結合能力的突變組 (Syt III C2AB*),發現野生型會促進胞外體標記分子CD63的釋放。因此,我們假設Syt III會藉由鈣離子結合位調控細胞中胞外體的運輸。在本研究中,我們用西方墨點法、免疫螢光染色與電子顯微鏡來證明此假設。首先,我們過量表現野生型與突變組在PC12細胞內並給予普通溶液或高鉀溶液 (KCl) 刺激,將收集到的溶液進行超高速離心後回溶進行電子顯微鏡觀察或西方墨點法分析。我們發現經過超高速離心後收集到的外泌體大小約為20~120 奈米,且胞外體上有表現胞外體標記分子CD63或CD9。接著,我們分析了給予KCl去極化刺激或給予普通溶液的細胞,發現野生型細胞中CD9的蛋白量相比於突變組在KCl刺激後明顯下降,顯示鈣離子結合到Syt III的C2AB結合位調控了有表現CD9的胞外體的運輸。我們也發現給予野生型細胞高鉀溶液並經過離心進行西方墨點分析,CD63的蛋白量在野生組相較突變組多,顯示Syt III可能會調控胞外體的運輸。其二,我們也利用免疫螢光染色分析細胞中CD9的螢光亮度,發現在給予KCl刺激後,野生型細胞內CD9螢光亮度較給予普通溶液增加,但是此現象在突變組並沒有出現,顯示鈣離子結合到Syt III結合位C2AB調控了KCl去極化所引發的胞外體生成。最後,我們利用免疫墨點 (dot blotting) 分析Syt III在胞外體膜構造上的拓撲 (topology),發現在胞外體上的Syt III為C端朝向細胞外,N端朝向胞外體內部。從上述結果,我們推論KCl去極化刺激下,Syt III是藉由鈣離子結合到結合位C2AB調控胞外體的生成與釋放。 | zh_TW |
| dc.description.abstract | Extracellular vesicles (EVs) are membrane-derived lipid bilayer structures with several subtypes, which are distinguished according to their sizes and cargos, such as different lipids, nucleic acids, or proteins. EVs can be released by cells, reflecting the physiological state of originating cells or serving as communication signals between cells. Several studies have shown that EV release can be regulated by calcium, similar to the triggering signal for calcium-dependent exocytosis of intracellular vesicles. However, the candidate protein coupling calcium signal to the EV release remains largely unknown. The Syt protein superfamily has been found to serve as the calcium sensor during calcium-dependent vesicular exocytosis, by calcium binding to two C2 domains (C2A and C2B). We have previously found that upon KCl depolarization, overexpressing Syt III or Syt III C2AB* (a mutant harboring the weakened calcium-binding ability in the C2AB domains) differentially changes the subcellular localization of CD63 (the EV marker) in PC12 cells. Therefore, we speculated that Syt III may regulate EV trafficking through calcium binding to its C2AB domains. However, there is no direct evidence for this up to date. In this study, we aim to determine the role of Syt III-C2AB in regulating EV trafficking from PC12 cells. First, after transfecting cells with Syt III or Syt III C2AB*, we treated cells with normal buffer or the KCl buffer for depolarizing cells. Different EV subtypes were harvested by gradient centrifugation to yield microvesicles (MVs) or exosomes. Subsequent electron microscopy and western blot analysis confirmed the EVs collected by centrifugation. EVs collected by this protocol ranged in size between 20 to 120 nm in diameter. Further, we found that after KCl depolarization, the CD9 signals in cell lysates were decreased in Syt III-overexpressing cells compared to the cells without KCl treatment. Western blot analysis also showed an increase in the CD63 signals in cells overexpressing Syt III after KCl depolarization, suggesting the potential role of Syt III in regulating EV trafficking. Moreover, confocal imaging analysis revealed that in the same batch of cells overexpressing Syt III, KCl depolarization increased the intracellular CD9 fluorescent signals compared with normal buffer, suggesting that Syt III may promote the formation of CD9-containing organelles upon KCl depolarization. In addition, by analyzing the topology of released EVs, we found that Syt III localized to the membrane of the EVs, with its C-terminal end towards the extracellular space. Therefore, these data suggested that Syt III plays a crucial role in regulating both biogenesis and trafficking of EVs in PC12 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:04:26Z (GMT). No. of bitstreams: 1 ntu-108-R06b43018-1.pdf: 6541885 bytes, checksum: 8156ac50f4b9737d2d91ea1775498edf (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定 i
致謝 ii 中文摘要 iii Abstract v Abbreviations vii Contents viii Chapter I-Introduction 1 Brief introduction of exo-endocytosis coupling in neurons 1 1.1 Neurotransmitter storage and release 1 1.2 Calcium-dependent exocytosis 2 1.3 Molecular mechanisms of membrane fusion 4 1.4 Synaptotagmin family 5 1.5 Synaptotagmin III 5 1.6 Extracellular vesicles (EVs) 7 1.7 EV subtypes and biogenesis 8 1.8 The composition of exosomes 9 1.9 Molecules involved in exosome export 10 1.10 Exosomes in the nervous system 11 1.11 Aims of the study 12 Chapter II-Materials and Methods 13 2.1 Plasmid construction and subcloning 13 2.2 Cell culture 14 2.3 Transient transfection 15 2.4 Immunofluorescence staining 16 2.5 Extracellular vesicle isolation 17 2.6 Transmission electron microscopy (TEM) 18 2.7 Western blotting 19 2.8 Dot blot analysis 20 2.9 Live imaging 21 2.10 Statistical analysis 22 Chapter III-Results 23 3.1 The expression levels of HA-Syt III and HA-Syt III C2AB* in PC12 cells after transient transfection by electroporation. 23 3.2 EVs can be isolated by PC12 normal buffer or KCl buffer, and different sized EVs are collected from cells overexpressing HA-Ctrl, HA-Syt III, or HA-Syt III C2AB*. 24 3.3 Syt III may regulate the EV trafficking through calcium binding to its C2AB domains upon KCl depolarization. 26 3.4 Overexpressing HA-Syt III in PC12 cells may increase intracellular CD9+-organelle formation after KCl depolarization. 28 3.5 Upon KCl depolarization, Syt III traffics to EVs with its C-terminus towards extracellular space. 30 Chapter IV-Discussion 32 4.1 EVs were isolated by ultracentrifugation with PC12 normal buffer or KCl buffer from transfected cells. 33 4.2 Syt III plays crucial roles in both endocytosis and exocytosis. 34 4.3 The potential role of Syt III in regulating neural circuit refinement through EVs in developing rat retinas. 36 4.4 The topology of Syt III on EVs 37 Chapter V-Conclusion 39 References 40 Figure 1. The Syt family serves as calcium sensors during the processes of calcium-dependent exocytosis. 46 Figure 2. The Ca2+ binding sites of Synaptotagmin III. 47 Figure 3. The overexpression levels of HA in PC12 cells in the absence or presence of KCl depolarization. 49 Figure 4. Schematic diagrams of EV isolation using ultracentrifugation and EV whole–mount analysis by transmission electron microscopy (TEM). 52 Figure 5. The size distribution of 100K EVs from cells overexpressing HA-Ctrl after KCl depolarization, mainly ranging from 60 nm to 120 nm. 54 Figure 6. The size distribution of 100K EVs from cells overexpressing Syt III after KCl depolarization, mainly ranging from 20 nm to 60 nm. 56 Figure 7. The size distribution of 100K EVs from cells overexpressing Syt III C2AB* after KCl depolarization, mainly ranging from 20 nm to 60 nm. 58 Figure 8. The protein levels of CD9 were decreased after KCl depolarization in cells overexpressing Syt III. 60 Figure 9. Overexpression of Syt III may increase the 10K EV immunoreactivities in PC12 cells after KCl depolarization. 62 Figure 10. Calcium binding to Syt III C2AB domains may increase the 100K EV immunoreactivities in PC12 cells after KCl depolarization. 65 Figure 11. Intact-control cells or cells transfected with HA-Ctrl displayed the same pattern in subcellular localization of CD9. 66 Figure 12. PC12 cells transfected with HA-Ctrl displayed the same pattern of CD9 signals compared with intact controls. 67 Figure 13. The confocal images of cells overexpressing HA-Ctrl, HA-Syt III, or HA-Syt III C2AB* in the absence or presence of KCl treatment. 69 Figure 14. Overexpression of Syt III may increase the intracellular CD9 signals. 70 Figure 15. Overexpression of HA-Syt III in PC12 cells may promote EV formation upon KCl depolarization. 72 Figure 16. Syt III traffics to 100k EVs with its C-terminal towards extracellular space upon KCl depolarization. 74 Figure 17. Syt III traffics to 10K EVs with its C-terminal end towards extracellular space upon KCl depolarization. 75 Figure 18. Syt III traffics to 2K pellets with uncertain membrane topology. 76 Figure 19. Syt III promotes the depolarization-induced EV trafficking by calcium binding to its C2AB domains in PC12 cells. 77 Appendix 78 Appendix 1. 72 hr post transfection of photo-convertible proteins. 79 Appendix 2. KCl depolarization may promote lysosome acidification. 80 Appendix 3. The abstract and poster of 2018 Annual meeting of the Society for Neuroscience 83 Appendix 4. The poster of 2019 poster competition in the Institute of Molecular and Cellular Biology 84 | |
| dc.language.iso | en | |
| dc.subject | 胞外體 | zh_TW |
| dc.subject | 鈣離子突觸結合蛋白 | zh_TW |
| dc.subject | 胞外體標記分子 | zh_TW |
| dc.subject | 超高速離心 | zh_TW |
| dc.subject | 電子顯微鏡 | zh_TW |
| dc.subject | 拓撲 | zh_TW |
| dc.subject | The markers of extracellular vesicles | en |
| dc.subject | Extracellular vesicles | en |
| dc.subject | Synaptotagmin | en |
| dc.subject | Topology | en |
| dc.subject | Super-speed gradient centrifugation | en |
| dc.subject | Electron microscopy | en |
| dc.title | 第三型突觸連結蛋白調控胞外體運輸所扮演的角色 | zh_TW |
| dc.title | The role of Synaptotagmin III in regulating trafficking of extracellular vesicles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐立中,盧主欽,賴品光,陳致真 | |
| dc.subject.keyword | 胞外體,鈣離子突觸結合蛋白,胞外體標記分子,超高速離心,電子顯微鏡,拓撲, | zh_TW |
| dc.subject.keyword | Extracellular vesicles,Synaptotagmin,The markers of extracellular vesicles,Super-speed gradient centrifugation,Electron microscopy,Topology, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201902087 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-29 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
