Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓
dc.contributor.authorYu-Hsuan Chanen
dc.contributor.author詹于漩zh_TW
dc.date.accessioned2021-06-17T07:04:25Z-
dc.date.available2024-07-31
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-29
dc.identifier.citation王正雄、柳家瑞. (2000). 台灣歷年環境中有機氯殺蟲劑殘留趨勢分析(1973-1999). Journal of Food and Drug Analysis.
行政院農委會. (2018). 禁用農藥一覽表.
初建, 林浩潭, 陳素文, 許得美, & 沈季蓉. (2017). 農業環境中三唑類農藥之監測及安全評估. 臺灣農藥科學(2), 25-40.
卓仕珏. (2010). 鈣與水稻鎘逆境關係之研究. 臺灣大學農藝學研究所學位論文, 1-71.
林信輝, & 陳意昌. (1993). 台灣地區高爾夫球場草皮特性與管理之研究. 中華民國雜草學會會刊, 14(2), 103-124.
AbouElKhashab, A. M., ElSammak, A. F., Elaidy, A. A., Salama, M. I., & Rieger, M. (1997). Paclobutrazol reduces some negative effects of salt stress in peach. J Am Soc Hortic Sci, 122(1), 43-46.
Allmaier, G. M., & Schmid, E. R. (1985). Effects of light on the organophosphorus pesticides bromophos and iodofenphos and their main degradation products examined in rainwater and on soil surface in a long-term study. J Agr Food Chem, 33(1), 90-92.
Almaliotis, D., Therios, I., & Karatassiou, M. (1996). Effects of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars. Paper presented at the II International Symposium on Irrigation of Horticultural Crops 449.
Arakawa, T., & Timasheff, S. N. (1983). Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Archives of biochemistry and biophysics, 224(1), 169-177.
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 141(2), 391-396.
Baninasab, B. (2009). Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia horticulturae, 121(2), 144-148.
Baris, R. D., Cohen, S. Z., Barnes, N. L., Lam, J., & Ma, Q. (2010). Quantitative analysis of over 20 years of golf course monitoring studies. Environmental toxicology and chemistry, 29(6), 1224-1236.
Baris, R. D., Cohen, S. Z., Barnes, N. L., Lam, J., & Ma, Q. L. (2010). Quantitative Analysis of over 20 Years of Golf Course Monitoring Studies. Environmental Toxicology and Chemistry, 29(6), 1224-1236.
Barton, D. H. (1970). The principles of conformational analysis. Science, 169(3945), 539-544.
Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
Benešová, M., Holá, D., Fischer, L., Jedelský, P. L., Hnilička, F., Wilhelmová, N., . . . Honnerová, J. (2012). The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PloS one, 7(6), e38017.
Blaschke, G., Kraft, H., Fickentscher, K., & Köhler, F. (1979). Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers (author's transl). Arzneimittel-forschung, 29(10), 1640.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Chu, T., Jusaitis, M., Aspinall, D., & Paleg, L. (1978). Accumulation of free proline at low temperatures. Physiol Plantarum, 43(3), 254-260.
Crowe, J., & Bradshaw, T. (2014). Chemistry for the biosciences: the essential concepts: Oxford University Press.
Damalas, C. A. (2009). Understanding benefits and risks of pesticide use. Sci Res Essays, 4(10), 945-949.
de Albuquerque, N. C. P., Carrao, D. B., Habenschus, M. D., & de Oliveira, A. R. M. (2018). Metabolism studies of chiral pesticides: A critical review. J Pharmaceut Biomed, 147, 89-109.
Debeaujon, I., & Koornneef, M. (2000). Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol, 122(2), 415-424.
Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The plant journal, 4(2), 215-223.
Drăghici, C. (2013). Enantioselectivity of Chiral Pesticides in the Environment.
Espenshade, P. J., & Hughes, A. L. (2007). Regulation of sterol synthesis in eukaryotes. Annu Rev Genet, 41, 401-427.
Esterhuizen-Londt, M., Pflugmacher, S., & Downing, T. G. (2011). The effect of beta-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum. Toxicon, 57(5), 803-810.
Fernandez-Cornejo, J., Nehring, R. F., Osteen, C., Wechsler, S., Martin, A., & Vialou, A. (2014). Pesticide use in US agriculture: 21 selected crops, 1960-2008.
Fletcher, R. (1987). Plant growth regulating properties of sterol-inhibiting fungicides Hormonal regulation of plant growth and development (pp. 103-113): Springer.
Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875.
Garg, N., & Manchanda, G. (2009). ROS generation in plants: boon or bane? Plant Biosystems, 143(1), 81-96.
Geithe, C., Protze, J., Kreuchwig, F., Krause, G., & Krautwurst, D. (2017). Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cell Mol Life Sci, 74(22), 4209-4229.
Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 59(2), 309-314.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch, 48(12), 909-930.
Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular plant, 8(9), 1304-1320.
Gyorgy Matolcsy, M. N. a. V. A. (1989). Pesticide chemistry.
Han, J. J., Jiang, J. Z., Su, H., Sun, M. J., Wang, P., Liu, D. H., & Zhou, Z. Q. (2013). Bioactivity, toxicity and dissipation of hexaconazole enantiomers. Chemosphere, 93(10), 2523-2527.
Handa, S., Handa, A. K., Hasegawa, P. M., & Bressan, R. A. (1986). Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol, 80(4), 938-945.
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198.
Heinonen‐Tanski, H., Rosenberg, C., Siltanen, H., Kilpi, S., & Simojoki, P. (1985). The effect of the annual use of pesticides on soil microorganisms, pesticide residues in the soil and barley yields. Pestic Sci, 16(4), 341-348.
Hendrix, J. W. (1970). Sterols in Growth and Reproduction of Fungi. Annu Rev Phytopathol, 8, 111-&.
Hu, Y., Yu, W., Liu, T., Shafi, M., Song, L., Du, X., . . . Wu, J. (2017). Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica, 55(3), 443-453.
Jungklang, J., Saengnil, K., & Uthaibutra, J. (2017). Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi J Biol Sci, 24(7), 1505-1512.
Karikalan, l. (2018). Effect of triazole on germination and growth of black gram seedlings.
Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729-735.
Kaur, G., & Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biologia plantarum, 59(4), 609-619.
Kishor, P. K., Sangam, S., Amrutha, R., Laxmi, P. S., Naidu, K., Rao, K., . . . Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci, 88(3), 424-438.
Kishorekumar, A., Jaleel, C. A., Manivannan, P., Sankar, B., Sridharan, R., Murali, P., & Panneerselvam, R. (2008). Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifolius. Colloids and Surfaces B: Biointerfaces, 62(2), 307-311.
Kohler, H. P. E. (1999). Sphingomonas herbicidovorans MH: a versatile phenoxyalkanoic acid herbicide degrader. J Ind Microbiol Biot, 23(4-5), 336-340.
Kristiansen, K. A., Jensen, P. E., Moller, I. M., & Schulz, A. (2009). Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiol Plantarum, 136(4), 369-383.
Kuo, C., Chen, H., & Ma, L. (1986). Effect of high temperature on proline content in tomato floral buds and leaves. Retrieved from
Kutz, F. W., Wood, P. H., & Bottimore, D. P. (1991). Organochlorine Pesticides and Polychlorinated-Biphenyls in Human Adipose-Tissue. Rev Environ Contam T, 120, 1-82.
Leroux, P., Bach, J., Debieu, D., Fillinger, S., Fritz, R., & Walker, A. (2008). Mode of action of sterol biosynthesis inhibitors and resistance phenomena in fungi. Paper presented at the Modern fungicides and antifungal compounds V: 15th International Reinhardsbrunn Symposium, Friedrichroda, Germany, May 6-10, 2007.
Li, J. S., Sun, L. B., Zuo, Z. H., Chen, M., & Wang, C. G. (2012). Effects of Paclobutrazol Exposure on Antioxidant Defense System in Sebastiscus marmoratus. B Environ Contam Tox, 89(4), 723-726.
Liman, E. R., Zhang, Y. V., & Montell, C. (2014). Peripheral Coding of Taste. Neuron, 81(5), 984-1000.
Liu, C., Liu, S., & Diao, J. (2019). Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers. Environ Pollut, 250, 610-617.
Liu, C., Wang, B., Diao, J., & Zhou, Z. (2016). Enantioselective toxicity and bioaccumulation of epoxiconazole enantiomers to the green alga Scenedesmus obliquus. RSC Advances, 6(64), 59842-59850.
Liu, W. P., Gan, J. Y., Schlenk, D., & Jury, W. A. (2005). Enantioselectivity in environmental safety of current chiral insecticides. P Natl Acad Sci USA, 102(3), 701-706.
Liu, W. P., Ye, J., & Jin, M. Q. (2009). Enantioselective Phytoeffects of Chiral Pesticides. J Agr Food Chem, 57(6), 2087-2095.
Lolaei, A., Mobasheri, S., Bemana, R., & Teymori, N. (2013). Role of paclobutrazol on vegetative and sexual growth of plants. International Journal of Agriculture and Crop Sciences, 5(9), 958.
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158.
Mast, N., Zheng, W. C., Stout, C. D., & Pikuleva, I. A. (2013). Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1. Mol Pharmacol, 84(1), 86-94.
Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., & Koornneef, M. (1998). Arabidopsis thaliana: a model plant for genome analysis. Science, 282(5389), 662-682.
Melchiorre, M., Robert, G., Trippi, V., Racca, R., & Lascano, H. R. (2009). Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul, 57(1), 57-68.
Miller, M. T., & Strömland, K. (1999). Teratogen update: thalidomide: a review, with a focus on ocular findings and new potential uses. Teratology, 60(5), 306-321.
Modified after Lennart Torstensson, SLU. (2016).
Molinari, H. B. C., Marur, C. J., Daros, E., de Campos, M. K. F., de Carvalho, J. F. R. P., Bespalhok, J. C., . . . Vieira, L. G. E. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plantarum, 130(2), 218-229.
Movahed, N., Eshghi, S., Jamali, B., & Kavoosi, B. (2012). Ameliorative effects of paclobutrazol on vegetative and physiological traits of grapevine cuttings under water stress condition. Acta Hort, 931, 475-484.
Muszkat, L., Feigelson, L., Bir, L., & Muszkat, K. A. (2002). Photocatalytic degradation of pesticides and bio-molecules in water. Pest Manag Sci, 58(11), 1143-1148.
Myouga, F., Hosoda, C., Umezawa, T., Iizumi, H., Kuromori, T., Motohashi, R., . . . Shinozaki, K. (2008). A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. The Plant Cell, 20(11), 3148-3162.
Nair, V. D., Gopi, R., Mohankumar, M., Kavina, J., & Panneerselvam, R. (2012). Effect of triadimefon: a triazole fungicide on oxidative stress defense system and eugenol content in Ocimum tenuiflorum L. Acta Physiol Plant, 34(2), 599-605.
Nakano, Y., & Asada, K. (1981). Hydrogen-Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach-Chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
Nazarudin, M. A., Fauzi, R. M., & Tsan, F. (2007). Effects of paclobutrazol on the growth and anatomy of stems and leaves of Syzygium campanulatum. Journal of Tropical Forest Science, 86-91.
Oerke, E. C. (2006). Crop losses to pests. J Agr Sci, 144, 31-43.
Orloff, H. D. (1954). The Stereoisomerism of Cyclohexane Derivatives. Chem Rev, 54(3), 347-447.
Parvin, S., Javadi, T., & Ghaderi, N. (2015). Proline, protein, RWC and MSI contents affected by paclobutrazol and water deficit treatments in strawberry cv. Paros. Cercetari Agronomice in Moldova, 48(1), 107-114.
Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current opinion in plant biology, 14(3), 290-295.
Percival, G. C., & AlBalushi, A. S. (2007). Paclobutrazol-induced drought tolerance in containerized English and evergreen oak. Arboriculture and Urban Forestry, 33(6), 397.
Polak, E. H., Fombon, A. M., Tilquin, C., & Punter, P. H. (1989). Sensory Evidence for Olfactory Receptors with Opposite Chiral Selectivity. Behav Brain Res, 31(3), 199-206.
Prashanth, S., Sadhasivam, V., & Parida, A. (2008). Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research, 17(2), 281-291.
Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic toxicology, 94(1), 56-61.
Rajan, S. (2018). Effect of Paclobutrazol and Propiconazole on Vigna radiate (L.) Seedlings.
Rudolph, A. S., Crowe, J. H., & Crowe, L. M. (1986). Effects of three stabilizing agents—proline, betaine, and trehalose—on membrane phospholipids. Archives of biochemistry and biophysics, 245(1), 134-143.
Sade, D., Sade, N., Shriki, O., Lerner, S., Gebremedhin, A., Karavani, A., . . . Moshelion, M. (2014). Water Balance, Hormone Homeostasis, and Sugar Signaling Are All Involved in Tomato Resistance to Tomato Yellow Leaf Curl Virus. Plant Physiol, 165(4), 1684-1697.
Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci, 163(5), 1037-1046.
Saradhi, P. P. (1991). Proline accumulation under heavy metal stress. J Plant Physiol, 138(5), 554-558.
Saradhi, P. P., AliaArora, S., & Prasad, K. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochemical and biophysical research communications, 209(1), 1-5.
Sharma, D., & Awasthi, M. D. (2005). Uptake of soil applied paclobutrazol in mango (Mangifera indica L.) and its persistence in fruit and soil. Chemosphere, 60(2), 164-169.
Sheldon, R. A. (1994). Chirotechnology: Industrial synthesis of optically active compounds.
Shiao, M.-S. (1983). Inhibition of gibberellin biosynthesis in Gibberella fujikuroi and germination of Oryza sativa by mevinolin. Bot Bull Acad Sin, 24, 135-143.
Song, S., Lei, Y., & Tian, X. (2005). Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian Journal of Plant Physiology, 52(6), 793-800.
Soumya, P., Kumar, P., & Pal, M. (2017). Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant. Indian journal of plant physiology, 22(3), 267-278.
Spitz, D. R., & Oberley, L. W. (1989). An Assay for Superoxide-Dismutase Activity in Mammalian Tissue-Homogenates. Analytical Biochemistry, 179(1), 8-18.
Srilatha, V., Reddy, Y., Upreti, K., & Jagannath, S. (2015). Pruning and paclobutrazol induced vigour, flowering and hormonal changes in mango (Mangifera indica L.). The Bioscan, 10(1), 161-166.
Srivastav, M., Kishor, A., Dahuja, A., & Sharma, R. (2010). Effect of paclobutrazol and salinity on ion leakage, proline content and activities of antioxidant enzymes in mango (Mangifera indica L.). Scientia Horticulturae, 125(4), 785-788.
Stadtman, E. R. (1990). Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radical Biology and Medicine, 9(4), 315-325.
Stoytcheva, M. (2011). Pesticides in the Modern World - Effects of Pesticides Exposure.
Subbaiah, K. V., Reddy, N., Padmavathamma, A., Reddy, M., Rao, A. D., Manjula, R., & Reddy, A. (2018). Effect of paclobutrazol on hermaphrodite flowers, leaf chlorophyll. Journal homepage: http://www. ijcmas. com, 7(04), 2018.
Sugavanam, B. (1984). Diastereoisomers and enantiomers of paclobutrazol: their preparation and biological activity. Pestic Sci, 15(3), 296-302.
Sun, J., Zhang, A., Zhang, J., Xie, X., & Liu, W. (2011). Enantiomeric resolution and growth-retardant activity in rice seedlings of uniconazole. J Agr Food Chem, 60(1), 160-164.
Sun, L., Li, J., Zuo, Z., Chen, M., & Wang, C. (2013). Chronic exposure to paclobutrazol causes hepatic steatosis in male rockfish Sebastiscus marmoratus and the mechanism involved. Aquatic toxicology, 126, 148-153.
Toxicological review of chlorine dioxide and chlorite. (2000).
Tukey, L. (1985). Cropping characteristics of bearing apple trees annually sprayed with paclobutrazol (PP333). Paper presented at the V International Symposium on Growth Regulators in Fruit Production 179.
van der Weele, C. M., Spollen, W. G., Sharp, R. E., & Baskin, T. I. (2000). Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot, 51(350), 1555-1562.
Wang, P., Liu, D. H., Lei, X. Q., Jiang, S. R., & Zhou, Z. Q. (2006). Enantiomeric separation of chiral pesticides by high-performance liquid chromatography on an amylose tris-(S)-1-phenylethylcarbamate chiral stationary phase. J Sep Sci, 29(2), 265-271.
Whipker, B. E., & Dasoju, S. (1998). Potted sunflower growth and flowering responses to foliar applications of daminozide, paclobutrazol, and uniconazole. HortTechnology, 8(1), 86-88.
Wintermans, J., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis, 109(2), 448-453.
Wu, C. W., Sun, J. Q., Zhang, A. P., & Liu, W. P. (2013). Dissipation and Enantioselective Degradation of Plant Growth Retardants Paclobutrazol and Uniconazole in Open Field, Greenhouse, and Laboratory Soils. Environ Sci Technol, 47(2), 843-849.
Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., & Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. J Exp Bot, 56(417), 1975-1981.
Yang, L.-p., Li, S., Li, Y.-x., & Gao, R. (2002). Bioactivity investigation of triazole fungicide enantiomers. Chin J Pestic Sci, 4, 67-70.
Yang, L. J., Yang, D. B., Yan, X. J., Cui, L., Wang, Z. Y., & Yuan, H. Z. (2016). The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation. Sci Rep-Uk, 6.
Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. W. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant, 30(4), 433-440.
Ye, J., Zhao, M. R., Niu, L. L., & Liu, W. P. (2015). Enantioselective Environmental Toxicology of Chiral Pesticides. Chem Res Toxicol, 28(3), 325-338.
Zhang, A. P., Xie, X. M., & Liu, W. P. (2011). Enantioselective Separation and Phytotoxicity on Rice Seedlings of Paclobutrazol. J Agr Food Chem, 59(8), 4300-4305.
Zhang, W., Cheng, C., Chen, L., Di, S., Liu, C., Diao, J., & Zhou, Z. (2016). Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa. Chemosphere, 159, 50-57.
Zhou, W. J., & Leul, M. (1998). Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul, 26(1), 41-47.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72719-
dc.description.abstract目前約有 30 % 農藥,成分為一個或多個鏡像異構物混合組成可稱為掌性農藥。巴克素 (Paclobutrazol, PBZ) 為三唑類農藥中的掌性農藥,可作為植物生長調節劑和殺菌劑使用。在台灣巴克素使用的相當普遍,主要用於矮化,屬殘長效性農藥,因此值得深入探討此方面研究。本研究目的為比較巴克素鏡像異構物及消旋體對阿拉伯芥以及小球藻的毒性差異,以利未來更審慎評估減少掌性農藥使用。本研究建立三唑類植物生長調節劑巴克素之鏡像異構物分離方法,研究其消旋體及不同鏡像異構物對目標生物阿拉伯芥及非目標生物小球藻的影響。利用高效液相層析方法搭配 Chiralcel® OJ-H 對掌性管柱,動相為正己烷/異丙醇 (90/10,v/v),流速1 ml min-1之條件下,可得到有效率之巴克素異構物分離方法。以高效液相層析儀、氣相層析質譜儀、圓二色光譜分析儀及旋光度計鑑定後得到收集巴克素的鏡像異構物分別為 (2R,3R,+)-巴克素及 (2S,3S,-)-巴克素 (peak1 和 peak2),純度達 99 %。阿拉伯芥在相同濃度的巴克素消旋體及其鏡像異構物 20 天後,外觀變化、生理指標或氧化逆境中,(2S,3S,-)-巴克素抑制植物生長顯著,例如植物面積較小。葉綠素含量、脯氨酸以及丙二醛濃度明顯提升,顯示 (2S,3S,-)-巴克素會造成阿拉伯芥較顯著逆境。且活性氧相對含量、抗氧化酵素比活性也都有相同趨勢,(2R,3R,+)-巴克素與控制組相比則無顯著差異。而 (2R,3R,+)-巴克素具有促進植物生長的現象,例如:葉片面積、根部鮮重顯著增加,與 (2S,3S,-)-巴克素相比,鏡像異構物間具相反效用。水生環境中小球藻,毒性為 (2R,3R,+)-巴克素影響較大。故未來具潛力朝單一鏡像異構物 (2S,3S,-)-巴克素農藥進行抑制植物生長的調節劑,或 (2R,3R,+)-巴克素能夠作為促進植物生長的調節劑,對於提高植物生長調節及降低農藥使用量皆有明顯的效用。此外 (2S,3S,-)-巴克素對非目標生物影響較小,具降低農藥風險能力。zh_TW
dc.description.abstractFrom an environmentally-friendly perspective, it is ideal to eliminate an enantiomer of a less dominant activity, leaving another with higher activity. This may potentially reduce pollution and the amount of pesticide used, improve target specificity and promote sustainability. Paclobutrazol is one type that is used as both plant growth regulator and fungicide. It is frequently used in Taiwan and due to its long residual action, becomes critically researched plant growth regulator. The purpose of this study is to compare the toxicity between racemate paclobutrazol and its enantiomers on Arabidopsis thaliana and Chlorella vulgaris in order to carefully assess the future use of chiral pesticides. In this study, the effects of liquid chromatographic mobile phase composition and flow rate on separation efficiency were investigated, and the enantiomers were also collected to study the enantioselective effects of paclobutrazol. Successful enantiomeric separation of paclobutrazol by HPLC equipped with a chiral selective column was performed. The separated enantiomers were characterized by HPLC, GC-MS, CD spectrum and polarimeter. The purity of these enantiomers were 99%. The selective effects of the enantiomers of paclobutrazol on wild type A. thaliana were investigated. The appearance, physiological metabolism or oxidative stress were significantly affected by (2S,3S,-)-Paclobutrazol compared to (2R,3R,+)-Paclobutrazol. The leaf area were smaller, and moderation effect were more significant. The chlorophyll, proline content and MDA concentration were increased. ROS and antioxidant enzymes had the same trend. (2R,3R,+)-Paclobutrazol had no difference compared to control. Paclobutrazol inhibited the growth of C. vulgaris, and their IC50 values following the order: (2R,3R,+)-Paclobutrazol < (2S,3S,-)-Paclobutrazol. As such, this result showed a potential of developing effective paclobutrazol using only enantiomers of higher activities, thereby reducing usage amount and risk of pollution.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:04:25Z (GMT). No. of bitstreams: 1
ntu-108-R06623003-1.pdf: 2363785 bytes, checksum: 25a89a7e7040571ca2df32dc743cd9cd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VII
表目錄 IX
壹、 前言 1
1.1 前人研究 1
1.2 農藥與環境的關係 2
1.3 鏡像異構物與農藥之關聯 3
1.4 立體異構物的特性 5
1.5 生活中的鏡像異構物 12
1.6 三唑類農藥殺菌劑與植物生長調節劑 14
1.7 植物生長調節劑巴克素對目標生物的影響 20
貳、 研究目的 24
肆、 材料與方法 26
4.1 植物生長調節劑巴克素鏡像異構物之分離與鑑定 26
4.2 供試植物之栽培 29
4.3 巴克素及其鏡像異構物對種子品質分析 31
4.4 巴克素及其鏡像異構物對阿拉伯芥之生理影響 33
4.5 活性氧化物分析 35
4.6 酵素活性分析 35
4.7 非目標水生生物之半抑制濃度試驗(IC50) 38
4.8 統計分析 41
伍、 結果與討論 42
5.1 三唑類植物生長調節劑巴克素的分離與收集 42
5.1.1. 管柱之測試 42
5.1.2. 高效液相層析儀動相之調整 42
5.1.3. 高效液相層析儀波長之調整 43
5.1.4. 高效液相層析儀流速之調整 43
5.1.5. 鏡像異構物之收集與鑑定 43
5.2 巴克素及其鏡像異構物對阿拉伯芥之生理影響 52
5.2.1. 野生型阿拉伯芥的外表觀察 52
5.2.2. 野生型阿拉伯芥的葉片面積變化 52
5.2.3. 野生型阿拉伯芥的相對含水量觀察 53
5.3 巴克素及其鏡像異構物對阿拉伯芥之繁殖器官影響 59
5.3.1 野生型阿拉伯芥的開花時機 59
5.3.2 野生型阿拉伯芥的種子效率 59
5.4 巴克素及其鏡像異構物對阿拉伯芥之生理變化分析 63
5.4.1 野生型阿拉伯芥的葉綠素含量 63
5.4.2 野生型阿拉伯芥的脯氨酸含量 64
5.4.3 野生型阿拉伯芥的丙二醛濃度 65
5.5 巴克素及其鏡像異構物對阿拉伯芥的氧化逆境分析 69
5.5.1 活性氧化物質 69
5.5.2 超氧化物歧化酶比活性 70
5.5.3 過氧化氫酶比活性 71
5.5.4 抗壞血酸過氧化酶比活性 72
5.6 巴克素及其鏡像異構物對小球藻之慢毒性影響 77
陸、 結論 80
柒、 參考文獻 82
dc.language.isozh-TW
dc.subject掌性農藥zh_TW
dc.subject巴克素zh_TW
dc.subject鏡像選擇性zh_TW
dc.subject植物生長調節劑zh_TW
dc.subjectPaclobutrazolen
dc.subjectChiral pesticideen
dc.subjectPlant growth regulatoren
dc.subjectEnantioselectivityen
dc.title植物生長調節劑巴克素
對阿拉伯芥以及小球藻之鏡像選擇性影響
zh_TW
dc.titleEnantioselective effects of plant growth regulator paclobutrazol on Arabidopsis thaliana and Chlorella vulgarisen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何明勳,蔣永正,羅正宗,陳玟瑾
dc.subject.keyword掌性農藥,巴克素,鏡像選擇性,植物生長調節劑,zh_TW
dc.subject.keywordChiral pesticide,Paclobutrazol,Enantioselectivity,Plant growth regulator,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201901921
dc.rights.note有償授權
dc.date.accepted2019-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved