請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72655
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
dc.contributor.author | Hao-Wei Lee | en |
dc.contributor.author | 李浩緯 | zh_TW |
dc.date.accessioned | 2021-06-17T07:02:53Z | - |
dc.date.available | 2024-08-07 | |
dc.date.copyright | 2019-08-07 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-30 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72655 | - |
dc.description.abstract | 唾腺功能低下是一長期未解的問題,在臨床上以“口乾症 (xerostomia)'的形式表現。唾腺分泌唾液功能的缺失會使得生活品質受到影響。截至目前,細胞治療或許是一種有效治療唾腺功能低下的治療策略。因此,開發細胞來源對於細胞治療的可行性是一重要的議題。唾腺球(Salispheres)是由唾腺幹細胞所衍生之球形細胞微結構。在本研究中,我們首先從不同解剖位置之三對主要唾腺中分離並培養唾腺球,其中包括下頷腺 (submandibular glands)、耳下腺 (parotid glands)與舌下腺 (sublingual glands)。我們接著解析不同來源唾腺球中的細胞特性、幹細胞特性、以及體外培養之分化能力。研究結果指出不同來源的唾腺球表現出不同的細胞特性但仍具有高度相似地幹細胞特性。接著,我們觀察到唾腺球的體外自發性分化(In-vitro spontaneous differentiation)是以細胞球體空腔化的形式呈現並伴隨著幹細胞特性的流失。接著,我們將生醫材料應用於唾腺球的培養系統中並進一步探索唾腺球在不同生醫材料微環境中的細胞行為。我們指出以幾丁聚醣(chitosan)為基底的生醫材料具有保留唾腺球幹性的能力,此一能力是幾丁聚醣透過調控唾腺球之細胞骨架重組並影響細胞極化而非細胞凋亡(apoptosis)與程序性死亡所致。試驗結果證實幾丁聚醣的培養系統能夠有效維持唾腺球之原始結構與幹性並同時證實以幾丁聚醣為基底的生醫材料在組織工程的應用潛力。我們接著藉由腺體內細胞球移植來解析唾腺球在體內之治療效果,其結果指出不同來源之唾腺球皆能有效改善放射線照射過之唾腺並修復分泌唾液的能力。在不同來源之唾腺球移植的唾腺中,我們觀察到典型唾腺組織結構的恢復與纖維化微環境的重塑現象,這些結果暗示不同對唾腺之功能贅餘的特性,並有助於未來如何設計細胞治療用於改善功能性低下之腺體器官。 | zh_TW |
dc.description.abstract | Dysfunctional salivary gland (SG) is a long-term unresolved problem and is presented as xerostomia in clinical. Lack of saliva producing capability of SG hampered the improvement of quality of life. To date, cell therapy is a promising therapeutic strategy for gradually restoring SG function. Hence, exploration of cellular sources is critical. Salispheres are spheroid cellular organizations that derived from SG stem cells. We first generated salispheres from three major pairs of SGs which located in different anatomic regions including submandibular glands (SMG), sublingual glands (SLG) and parotid gland (PG). In the current study, we investigated the cellular features, stemness properties, and in-vitro differentiation capability within major SGs-derived salispheres. Our results demonstrate that salispheres exhibit distinct cellular features but share similar stemness properties. Subsequently, in-vitro spontaneous differentiation of salispheres are observed and presented as spheroid cavitation which further lead to loss of stemness during in-vitro expansion. Therefore, applications of biomaterials are involved to further explore the cellular behavior upon distinct biomaterials. Chitosan-based biomaterials are then demonstrated to be capable of maintaining stemness properties of salispheres by regulating the cytoskeleton re-arrangement and polarity establishment but not apoptosis and programmed cell death. The results suggest that the chitosan-containing system could effectively maintain the primitive structures and properties of salispheres which demonstrates the potential application of chitosan-based biomaterials for further tissue-engineering demands. The in-vivo effects of major SGs-derived salispheres are investigated by intra-glandular transplantation. The results revealed that salispheres are all capable of improving the saliva secreting ability of irradiated SMG. Typical histological structures can be observed in transplanted glands and the fibrotic microenvironments are remodeled by transplanting salispheres regardless of origins. The results hint the possibility of functional redundancy upon distinct pairs of major SGs, which is helpful for the design of cell therapy to rescue the dysfunctional glandular organs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:53Z (GMT). No. of bitstreams: 1 ntu-108-F97548047-1.pdf: 5737664 bytes, checksum: bd58651433ee6d442a2e30acc5fe6b37 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III GRAPHICAL ABSTRACT V TABLE OF CONTENTS VI LIST OF TABLES X LIST OF FIGURES XI CHAPTER 1: INTRODUCTION 1 1.1. Background 1 1.2. Specific Aims 2 Aim 1: Establishment of SG stem/progenitor cell clusters cultivation system 2 Aim 2: Maintenance of stemness properties of the SG stem/progenitor cells through biomaterials approaching 3 Aim 3: Applications of major SGs-derived stem/progenitor cells on glandular regeneration 3 CHAPTER 2: LITERATURE REVIEW 5 2.1. Histology of salivary glands 5 2.2. Salivary glands stem/progenitor cells 7 2.3. Chitosan biomaterials 8 2.4. In-vitro spontaneous differentiation of stem cells 9 2.5. Cell polarization of progenitor cells 10 2.6. Radiation-induced xerostomia 11 2.7. Strategies for rescuing dysfunctional SGs 12 CHAPTER 3: MATERIALS AND METHODS 13 3.1. Biomaterial Preparation 13 3.1.1. Type I Collagen (Col I) 13 3.1.2. Poly-vinyl alcohol (PVA) 13 3.1.3. Poly -caprolactone (PCL) 13 3.1.4. Poly-vinylidene fluoride (PVDF) membrane 14 3.1.5. Chitosan (Chi) 14 3.2. Animals 15 3.3. Isolation and purification of salivary stem/progenitor cells 16 3.3.1. Cultivation of salispheres 16 3.3.2. Inhibitor treatment 17 3.4. Establishment of dysfunctional salivary gland model 17 3.5. Self-renewal assay of salispheres 18 3.6. Cell transplantation 19 3.7. Saliva collection and -amylase measurement 20 3.8. Immunofluorescence staining 22 3.9. Immunohistochemical staining 22 3.10. TUNEL assay 23 3.11. Western Blotting 24 3.12. Image analysis 25 3.12.1. Surface areas 25 3.12.2. Collagen accumulation areas 26 3.12.3. Circularity 26 3.12.4. Cavitation 27 3.12.5. Immunofluorescence intensity distribution profiles 27 3.12.6. Expression rates of SG stem cell markers in salispheres 29 3.12.7. Integration efficacy of salispheres in irradiated-SMG 30 3.13. Real-time qPCR 31 3.14. Statistical Analysis 32 CHAPTER 4: RESULTS 33 4.1. Establishment of SG stem/progenitor cell cultivation system 33 4.1.1. Histological and anatomical features of major SGs 33 4.1.2. Isolation of salivary stem/progenitor cells and their cellular features 34 4.1.3. Formation of salispheres in-vitro 35 4.1.4. Characterization of stemness property and self-renewal ability of major SG-derived salispheres 36 4.1.5. Characterization of differentiated cellular features in major SG-derived salispheres 38 4.1.6. In-vitro spontaneous cavitation and differentiation of salispheres during expansion 39 4.1.7. Formation of spheroid cavitation in-vitro 40 4.2. Maintenance of stemness properties of the SG stem/progenitor cells through biomaterials approaching 42 4.2.1. In-vitro culture of salispheres on biomaterials 42 4.2.2. Suppression of spheroid cavitation by chitosan 43 4.2.3. Chitosan-coated substrates suppressed cavitation formation by dose-dependent manners 45 4.2.4. Soluble form chitosan revealed powerful effect on cavitation suppression 46 4.2.5. Apoptotic pathways were not affected by chitosan-based biomaterials during cavitation formation in salispheres 48 4.2.6. Immunoblotting of p53 and cleaved caspase-3 50 4.2.7. Chitosan altered spheroid polarity during salispheres cultivation 51 4.2.8. Disorganization of apical-basolateral polarity in chitosan-cultured salispheres 55 4.2.9. Chitosan affected cytoskeleton rearrangement in salispheres 56 4.2.10. Chitosan sustained spheroid organization while actomyosin contractility were suppressed 58 4.2.11. Chitosan maintains the stemness features of progenitor cells in salispheres 60 4.3. Applications of major SGs-derived stem/progenitor cells on glandular regeneration 63 4.3.1. In-vivo effects of major SG-derived salispheres on -irradiated SGs 63 4.3.2. In-vivo tracing of transplanted EGFP+ salispheres 64 4.3.3. Tissue integration of transplanted cells within the SG structures of recipient animals 65 4.3.4. Histological alterations of irradiated SMGs after salispheres transplantation 66 4.3.5. Fibrosis attenuation of irradiated SMGs after salispheres transplantation 68 CHAPTER 5: DISCUSSIONS 70 5.1. Establishment of SG stem/progenitor cell cultivation system 70 5.1.1. Spheroid like structures of SG stem/progenitor cells 70 5.1.2. Divergence cellular features but similar tissue regeneration capability of SGs-derived salispheres 71 5.2. Maintenance of stemness properties of the SG stem/progenitor cells through biomaterials approaching 73 5.2.1. Spheroid cavitation regulated by cell rearrangement but not apoptosis or programmed cell death 73 5.2.2. Chitosan affected cell polarization in salispheres 74 5.2.3. E-cadherin and chitosan 75 5.2.4. Advantages of chitosan-based biomaterials on promoting stem cell enrichment 76 5.3. Applications of major SGs-derived stem/progenitor cells on glandular regeneration 77 5.3.1. Cell plasticity of salispheres in SGs regeneration 77 5.3.2. Integration or paracrine? 78 5.3.3. Tissue remodeling and fibrosis attenuation 79 CHAPTER 6: CONCLUSIONS 81 REFERENCE 82 TABLES 95 FIGURES 97 APPENDIX EDUCATION AND PUBLICATION LIST 128 | |
dc.language.iso | en | |
dc.title | 調控唾腺球之結構和來源以探討其促進唾液腺再生之潛力 | zh_TW |
dc.title | Regulation of the structure and the origin of salispheres for their potential in promoting salivary gland regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 楊宗霖(Tsung-Lin Yang) | |
dc.contributor.oralexamcommittee | 姚俊旭,楊銘乾,洪智煌,李亦宸 | |
dc.subject.keyword | 幾丁聚醣,唾液腺,幹細胞,前驅細胞,唾腺球,空腔化,腺體再生,極化, | zh_TW |
dc.subject.keyword | chitosan,salivary glands,stem cells,progenitor cells,salispheres,cavitation,glandular regeneration,polarization, | en |
dc.relation.page | 129 | |
dc.identifier.doi | 10.6342/NTU201902204 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。