請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72650完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰(Ruey-Feng Chang) | |
| dc.contributor.author | Chung-Chien Lee | en |
| dc.contributor.author | 李忠謙 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:02:46Z | - |
| dc.date.available | 2024-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-30 | |
| dc.identifier.citation | 1. Luime JJ, Koes BW, Hendriksen IJ, Burdorf A, Verhagen AP, Miedema HS, et al. Prevalence and incidence of shoulder pain in the general population; a systematic review. Scandinavian journal of rheumatology. 2004;33(2):73-81.
2. Walker BF. The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. Journal of spinal disorders. 2000;13(3):205-17. 3. Hidalgo-Lozano A, Fernandez-de-las-Penas C, Alonso-Blanco C, Ge HY, Arendt-Nielsen L, Arroyo-Morales M. Muscle trigger points and pressure pain hyperalgesia in the shoulder muscles in patients with unilateral shoulder impingement: a blinded, controlled study. Experimental brain research. 2010;202(4):915-25. 4. Mitchell C, Adebajo A, Hay E, Carr A. Shoulder pain: diagnosis and management in primary care. Bmj. 2005;331(7525):1124-8. 5. Macfarlane GJ, Hunt IM, Silman AJ. Predictors of chronic shoulder pain: a population based prospective study. The Journal of rheumatology. 1998;25(8):1612-5. 6. Beggs I, editor Shoulder ultrasound. Seminars in Ultrasound, CT and MRI; 2011: Elsevier. 7. Vlychou M, Dailiana Z, Fotiadou A, Papanagiotou M, Fezoulidis IV, Malizos K. Symptomatic partial rotator cuff tears: diagnostic performance of ultrasound and magnetic resonance imaging with surgical correlation. Acta radiologica. 2009;50(1):101-5. 8. Allen GM, Wilson DJ. Ultrasound of the shoulder. European journal of ultrasound : official journal of the European Federation of Societies for Ultrasound in Medicine and Biology. 2001;14(1):3-9. 9. Kurol M, Rahme H, Hilding S. Sonography for diagnosis of rotator cuff tear. Comparison with observations at surgery in 58 shoulders. Acta orthopaedica Scandinavica. 1991;62(5):465-7. 10. Park HB, Yokota A, Gill HS, El Rassi G, McFarland EG. Diagnostic accuracy of clinical tests for the different degrees of subacromial impingement syndrome. The Journal of bone and joint surgery American volume. 2005;87(7):1446-55. 11. Beaudreuil J, Nizard R, Thomas T, Peyre M, Liotard JP, Boileau P, et al. Contribution of clinical tests to the diagnosis of rotator cuff disease: a systematic literature review. Joint, bone, spine : revue du rhumatisme. 2009;76(1):15-9. 12. Murphy RJ, Daines MT, Carr AJ, Rees JL. An independent learning method for orthopaedic surgeons performing shoulder ultrasound to identify full-thickness tears of the rotator cuff. The Journal of bone and joint surgery American volume. 2013;95(3):266-72. 13. Milosavljevic J, Elvin A, Rahme H. Ultrasonography of the rotator cuff: a comparison with arthroscopy in one-hundred-and-ninety consecutive cases. Acta Radiologica. 2005;46(8):858-65. 14. Naqvi GA, Jadaan M, Harrington P. Accuracy of ultrasonography and magnetic resonance imaging for detection of full thickness rotator cuff tears. International journal of shoulder surgery. 2009;3(4):94. 15. Shahabpour M, Kichouh M, Laridon E, Gielen JL, De Mey J. The effectiveness of diagnostic imaging methods for the assessment of soft tissue and articular disorders of the shoulder and elbow. European journal of radiology. 2008;65(2):194-200. 16. Middleton WD, Teefey SA, Yamaguchi K. Sonography of the rotator cuff: analysis of interobserver variability. AJR Am J Roentgenol. 2004;183(5):1465-8. 17. de Jesus JO, Parker L, Frangos AJ, Nazarian LN. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis. AJR American journal of roentgenology. 2009;192(6):1701-7. 18. Smith TO, Back T, Toms AP, Hing CB. Diagnostic accuracy of ultrasound for rotator cuff tears in adults: a systematic review and meta-analysis. Clin Radiol. 2011;66(11):1036-48. 19. Teefey SA, Rubin DA, Middleton WD, Hildebolt CF, Leibold RA, Yamaguchi K. Detection and quantification of rotator cuff tears. Comparison of ultrasonographic, magnetic resonance imaging, and arthroscopic findings in seventy-one consecutive cases. J Bone Joint Surg Am. 2004;86-A(4):708-16. 20. Beggs I. Ultrasound of the shoulder and elbow. The Orthopedic clinics of North America. 2006;37(3):277-85, v. 21. Miller D, Frost A, Hall A, Barton C, Bhoora I, Kathuria V. A 'one-stop clinic' for the diagnosis and management of rotator cuff pathology: Getting the right diagnosis first time. International journal of clinical practice. 2008;62(5):750-3. 22. Mack LA, Matsen FA, 3rd, Kilcoyne RF, Davies PK, Sickler ME. US evaluation of the rotator cuff. Radiology. 1985;157(1):205-9. 23. Brandt TD, Cardone BW, Grant TH, Post M, Weiss CA. Rotator cuff sonography: a reassessment. Radiology. 1989;173(2):323-7. 24. Soble MG, Kaye AD, Guay RC. Rotator cuff tear: clinical experience with sonographic detection. Radiology. 1989;173(2):319-21. 25. Wiener SN, Seitz WH, Jr. Sonography of the shoulder in patients with tears of the rotator cuff: accuracy and value for selecting surgical options. AJR American journal of roentgenology. 1993;160(1):103-7; discussion 9-10. 26. Read JW, Perko M. Shoulder ultrasound: diagnostic accuracy for impingement syndrome, rotator cuff tear, and biceps tendon pathology. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons [et al]. 1998;7(3):264-71. 27. Teefey SA, Hasan SA, Middleton WD, Patel M, Wright RW, Yamaguchi K. Ultrasonography of the rotator cuff. A comparison of ultrasonographic and arthroscopic findings in one hundred consecutive cases. The Journal of bone and joint surgery American volume. 2000;82(4):498-504. 28. Roberts CS, Walker JA, 2nd, Seligson D. Diagnostic capabilities of shoulder ultrasonography in the detection of complete and partial rotator cuff tears. American journal of orthopedics. 2001;30(2):159-62. 29. Alasaarela E, Leppilahti J, Hakala M. Ultrasound and operative evaluation of arthritic shoulder joints. Annals of the rheumatic diseases. 1998;57(6):357-60. 30. van Holsbeeck MT, Kolowich PA, Eyler WR, Craig JG, Shirazi KK, Habra GK, et al. US depiction of partial-thickness tear of the rotator cuff. Radiology. 1995;197(2):443-6. 31. Moosmayer S, Heir S, Smith HJ. Sonography of the rotator cuff in painful shoulders performed without knowledge of clinical information: results from 58 sonographic examinations with surgical correlation. J Clin Ultrasound. 2007;35(1):20-6. 32. Martin-Hervas C, Romero J, Navas-Acien A, Reboiras JJ, Munuera L. Ultrasonographic and magnetic resonance images of rotator cuff lesions compared with arthroscopy or open surgery findings. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons [et al]. 2001;10(5):410-5. 33. Kamwendo K, Linton SJ, Moritz U. Neck and shoulder disorders in medical secretaries. Part I. Pain prevalence and risk factors. Scandinavian journal of rehabilitation medicine. 1991;23(3):127-33. 34. de Winter AF, Jans MP, Scholten RJ, Deville W, van Schaardenburg D, Bouter LM. Diagnostic classification of shoulder disorders: interobserver agreement and determinants of disagreement. Annals of the rheumatic diseases. 1999;58(5):272-7. 35. O'Connor PJ, Rankine J, Gibbon WW, Richardson A, Winter F, Miller JH. Interobserver variation in sonography of the painful shoulder. J Clin Ultrasound. 2005;33(2):53-6. 36. Smith T, Back T, Toms A, Hing C. Diagnostic accuracy of ultrasound for rotator cuff tears in adults: a systematic review and meta-analysis. Clinical radiology. 2011;66(11):1036-48. 37. Le Corroller T, Cohen M, Aswad R, Pauly V, Champsaur P. Sonography of the painful shoulder: role of the operator’s experience. Skeletal radiology. 2008;37(11):979-86. 38. Middleton WD, Teefey SA, Yamaguchi K. Sonography of the rotator cuff: analysis of interobserver variability. American Journal of Roentgenology. 2004;183(5):1465-8. 39. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. The British journal of radiology. 2005;78 Spec No 1:S3-S19. 40. Giger ML, Chan HP, Boone J. Anniversary paper: History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys. 2008;35(12):5799-820. 41. Joo S, Yang YS, Moon WK, Kim HC. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE transactions on medical imaging. 2004;23(10):1292-300. 42. Moon WK, Lo CM, Chang JM, Huang CS, Chen JH, Chang RF. Computer-aided classification of breast masses using speckle features of automated breast ultrasound images. Med Phys. 2012;39(10):6465-73. 43. Lo C-M, Moon WK, Huang C-S, Chen J-H, Yang M-C, Chang R-F. Intensity-invariant texture analysis for classification of bi-rads category 3 breast masses. Ultrasound in medicine & biology. 2015;41(7):2039-48. 44. Lo C-M, Lai Y-C, Chou Y-H, Chang R-F. Quantitative breast lesion classification based on multichannel distributions in shear-wave imaging. Computer methods and programs in biomedicine. 2015;122(3):354-61. 45. Bonanno L, Marino S, Bramanti P, Sottile F. Validation of a Computer-Aided Diagnosis system for the automatic identification of carotid atherosclerosis. Ultrasound in medicine & biology. 2015;41(2):509-16. 46. Lo C-M, Chen Y-P, Chang Y-C, Lo C, Huang C-S, Chang R-F. Computer-aided strain evaluation for acoustic radiation force impulse imaging of breast masses. Ultrasonic imaging. 2014;36(3):151-66. 47. Flores WG, de Albuquerque Pereira WC, Infantosi AFC. Improving classification performance of breast lesions on ultrasonography. Pattern Recognition. 2015;48(4):1125-36. 48. Matta TTd, Pereira WCdA, Radaelli R, Pinto RS, Oliveira LFd. Texture analysis of ultrasound images is a sensitive method to follow‐up muscle damage induced by eccentric exercise. Clinical Physiology and Functional Imaging. 2017. 49. Singh S, Maxwell J, Baker JA, Nicholas JL, Lo JY. Computer-aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents 1. Radiology. 2011;258(1):73-80. 50. Kashikura Y, Nakayama R, Hizukuri A, Noro A, Nohara Y, Nakamura T, et al. Improved differential diagnosis of breast masses on ultrasonographic images with a computer-aided diagnosis scheme for determining histological classifications. Academic radiology. 2013;20(4):471-7. 51. Horng M-H, Chen S-M. Multi-class classification of ultrasonic supraspinatus images based on radial basis function neural network. J Med Biol Eng. 2009;29(5):242-50. 52. Petranova T, Vlad V, Porta F, Radunovic G, Micu MC, Nestorova R, et al. Ultrasound of the shoulder. Med Ultrason. 2012;14(2):133-40. 53. Moon WK, Lo CM, Huang CS, Chen JH, Chang RF. Computer-aided diagnosis based on speckle patterns in ultrasound images. Ultrasound Med Biol. 2012;38(7):1251-61. 54. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on. 1973(6):610-21. 55. Groeneveld RA, Meeden G. Measuring skewness and kurtosis. The Statistician. 1984:391-9. 56. Baek HJ, Kim HS, Kim N, Choi YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology. 2012;264(3):834-43. 57. Haralick RM, Shanmugam K. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics. 1973(6):610-21. 58. Mou WY, Guo DM, Liu H, Zhang P, Shao Y, Wang SW, et al. Staging liver fibrosis by analysis of non-linear normalization texture in gadolinium-enhanced magnetic resonance imaging. Biomedical Physics & Engineering Express. 2015;1(4):045012. 59. Hosmer DW, Lemeshow S, Cook E. Applied logistic regression 2nd edition. NY: John Wiley & Sons. 2000. 60. Landis JR, Koch GG. The measurement of observer agreement for categorical data. biometrics. 1977:159-74. 61. Field AP. Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications; 2009. 62. Kayser R, Hampf S, Pankow M, Seeber E, Heyde CE. [Validity of ultrasound examinations of disorders of the shoulder joint]. Ultraschall Med. 2005;26(4):291-8. 63. Rutten MJ, Jager GJ, Blickman JG. From the RSNA refresher courses: US of the rotator cuff: pitfalls, limitations, and artifacts. Radiographics. 2006;26(2):589-604. 64. de Jesus JO, Parker L, Frangos AJ, Nazarian LN. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis. American Journal of Roentgenology. 2009;192(6):1701-7. 65. Brenneke SL, Morgan CJ. Evaluation of ultrasonography as a diagnostic technique in the assessment of rotator cuff tendon tears. The American journal of sports medicine. 1992;20(3):287-9. 66. Takagishi K, Makino K, Takahira N, Ikeda T, Tsuruno K, Itoman M. Ultrasonography for diagnosis of rotator cuff tear. Skeletal radiology. 1996;25(3):221-4. 67. Gupta R, Elamvazuthi I, Dass SC, Faye I, Vasant P, George J, et al. Curvelet based automatic segmentation of supraspinatus tendon from ultrasound image: a focused assistive diagnostic method. BioMedical Engineering OnLine. 2014;13:157. 68. Jabbar SI, Day CR, Heinz N, Chadwick EK, editors. Using Convolutional Neural Network for edge detection in musculoskeletal ultrasound images. 2016 International Joint Conference on Neural Networks (IJCNN); 2016 24-29 July 2016. 69. Kim S, Lee D, Park S, Oh KS, Chung SW, Kim Y. Automatic segmentation of supraspinatus from MRI by internal shape fitting and autocorrection. Computer methods and programs in biomedicine. 2017;140:165-74. 70. Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science: Cambridge University Press; 1999. 71. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vision. 1988;1(4):321-31. 72. Williams DJ, Shah M, editors. A fast algorithm for active contours. Computer Vision, 1990 Proceedings, Third International Conference on; 1990 4-7 Dec 1990. 73. Williams DJ, Shah M. A fast algorithm for active contours and curvature estimation. CVGIP: Image Underst. 1992;55(1):14-26. 74. Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM. 1972;15(1):11-5. 75. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979;9(1):62-6. 76. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1990;12(7):629-39. 77. Zhang X, Feng X, Xiao P, He G, Zhu L. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing. 2015;102:73-84. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72650 | - |
| dc.description.abstract | 肩膀酸痛是常見的肌肉骨關節疾病,根據文獻結果,肩膀酸痛之終生盛行率達70%,肩旋轉肌腱病變及破裂是最主要的肩部肌腱傷害之一,在老年人族群更為常見,老年人發生肩旋轉肌病變及斷裂的致病機轉為年齡老化及肌腱組織弱化所致,若發生於年輕族群,多為外傷所致。臨床診斷肩旋轉肌疾病有一定的困難度,因為此類病患症狀及臨床表現不具專一性,理學檢查對於鑑別診斷肩旋轉病變之僅有中度準確度(敏感度及特異度) 。僅由病史及理學檢查是無法確診的,X光檢查無法亦直接辨識肌肉、肌腱、韌帶等軟組織的病變,故診斷肩旋轉病變仰賴影像學檢查,其中肩部超音波為診斷工具之一,而超音波診斷雖然由經驗豐富之操作者來執行,可得到高診斷正確率,診斷正確率可核磁共振檢查相當,但操作者間診斷正確率差異大。故本篇論文研究主題,針對肩關節超音波影像進行電腦影像處理來取得並分析取得之資料,並根據超音波影像所運算出來之資料來診斷並分類肩旋轉肌疾病,期望以電腦輔助診斷分類系統,提供肩關節超音波操作者對肩旋轉肌腱病變及破裂之診斷參考,以降低操作者間診斷正確率差異。
論文第一部分之電腦輔助肩旋轉肌病變診斷分類系統[computer-aided diagnosis (CAD) system] ,將分析之肩部超音波影像進行電腦診斷分類為肩旋轉肌腱炎、鈣化性肌腱炎及肩旋轉肌腱破裂(共三種病變),納入研究之影像包括43張肩旋轉肌腱炎影像、30張鈣化性肌腱炎影像及26張肩旋轉肌腱破裂影像,針對每張超音波影像之病變區域之區域面積及紋理特徵進行分析,並合併多類別邏輯迴歸分類器進行病變分類診斷。此電腦輔助診斷分類系統可達到87.9%之診斷準確率。並可達以下個別準確率: 診斷肩旋轉肌腱炎88.4%、診斷鈣化性肌腱炎83.3%及診斷肩旋轉肌腱破裂92.3%。 論文第二部分之電腦輔助肩旋轉肌腱破裂診斷分類系統[computer-aided tear classification (CTC) system],針對肩旋轉肌腱破裂進行電腦輔助診斷,納入研究之影像包括89張肩旋轉肌腱炎影像及102張肩旋轉肌腱破裂影像(共136名病患) ,針對每張超音波影像之病變區域之亮度值及紋理特徵進行分析,並合併二元邏輯迴歸分類器進行病變分類診斷。此電腦輔助診斷肩旋轉肌腱破裂診斷分類系統可達到92% (176/191)之診斷準確率。 根據研究結果,電腦輔助肩旋轉肌病變診斷分類系統(CAD)及電腦輔助肩旋轉肌腱破裂診斷分類系統(CTC)可達良好之診斷正確率,臨床上可提供操作者診斷上之參考。 | zh_TW |
| dc.description.abstract | The lifetime prevalence of shoulder pain approaches 70%, which is mostly attributable to rotator cuff lesions such as inflammation, calcific tendinitis, and tears. On clinical examination, shoulder ultrasound is recommended to detect lesions. However, inter-operator variability of diagnostic accuracy exists due to the operator’ experience and expertise. In this study, a computer-aided diagnosis (CAD) system was developed to assist ultrasound operators in diagnosing rotator cuff lesions and to improve practicality of ultrasound examination. The collected cases included 43 inflammations, 30 calcific tendinitis, and 26 tears. For each case, the lesion area and texture features were extracted from the entire lesions and combined in a multinomial logistic regression classifier for lesion classification. The proposed CAD achieved an accuracy of 87.9%. The individual accuracy of this CAD system was 88.4% for inflammation, 83.3% for calcific tendinitis, and 92.3% for tear groups. The k value of Cohen’s Kappa was 0.798.
In another part of this study, a computer-aided tear classification (CTC) system was developed to identify supraspinatus tears in ultrasound examinations and reduce inter-operator variability. The observed cases included 89 ultrasound images of supraspinatus tendinopathy and 102 of supraspinatus tear from 136 patients. For each case, intensity and texture features were extracted from the entire lesion and combined in a binary logistic regression classifier for lesion classification. The proposed CTC system achieved an accuracy rate of 92% (176/191) and an area under receiver operating characteristic curve (Az) of 0.9694. Based on diagnostic performance, the CAD and CTC systems have promise for clinical use. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:46Z (GMT). No. of bitstreams: 1 ntu-108-D02945014-1.pdf: 1749174 bytes, checksum: fe8c16534eab85717b6d93f305574d3f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Chapter 1. Introduction 1 Chapter 2. Materials and Methods 7 Chapter 3. Results of CAD system 25 Chapter 4. Results of CTC system 29 Chapter 5. Discussion of CAD system 33 Chapter 6. Discussion of CTC system 37 Chapter 7. Preliminary study of Supraspinatus Segmentation 43 Chapter 8. Conclusion of CAD and CTC system and Future Works 47 References 49 | |
| dc.language.iso | en | |
| dc.subject | 肩旋轉肌腱破裂 | zh_TW |
| dc.subject | 肩旋轉肌腱病變 | zh_TW |
| dc.subject | 鈣化性肌腱炎 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 電腦輔助診斷 | zh_TW |
| dc.subject | 紋理特徵分析 | zh_TW |
| dc.subject | calcific tendinitis | en |
| dc.subject | Rotator cuff tendinopathy | en |
| dc.subject | rotator cuff tear | en |
| dc.subject | texture | en |
| dc.subject | computer-aided diagnosis | en |
| dc.subject | shoulder ultrasound | en |
| dc.title | 運用電腦輔助分類系統分析肩關節超音波影像以診斷肩旋轉肌病變及肩旋轉肌破裂 | zh_TW |
| dc.title | Computer-aided Diagnosis of Different Rotator Cuff Lesions and Quantitative Diagnosis of Rotator Cuff Tears using shoulder musculoskeletal ultrasound | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 傅楸善(Chiou-Shann Fuh),曾宇鳳(Yu-Feng Tseng),羅崇銘(Chung-Ming Lo),廖振焜(CHEN-KUN LIAW) | |
| dc.subject.keyword | 肩旋轉肌腱病變,鈣化性肌腱炎,超音波,電腦輔助診斷,紋理特徵分析,肩旋轉肌腱破裂, | zh_TW |
| dc.subject.keyword | Rotator cuff tendinopathy,calcific tendinitis,shoulder ultrasound,computer-aided diagnosis,texture,rotator cuff tear, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201901454 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
