請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡協澄(Hsieh-Chen Tsai) | |
| dc.contributor.author | Tzu-Yuan Lin | en |
| dc.contributor.author | 林子淵 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:02:45Z | - |
| dc.date.available | 2023-08-14 | |
| dc.date.copyright | 2021-01-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2021-01-12 | |
| dc.identifier.citation | [1] Barbier, E, “Geothermal energy technology and current status: an overview” Review Article Renewable and Sustainable Energy Reviews 6(2002), pp. 3-65 [2] “Levelized Cost of New Generation Resources in the Annual Energy Outlook 2013.” Washington, DC: U.S. EIA. Accessed September 20th, 2013. [3] U.S. DOE, EERE (Dec 97). 'Renewable Energy Technology Characterizations,' (EPRI Topical Report No. TR-109496). Retrieved March 4, 2005, from http://www.eere.energy.gov/consumerinfo/tech_reports.html. [4] Benjamin Matek, Geothermal Energy Association, ' A Discussion of the Benefits Geothermal Power Provides to the Future U.S. Power System,' The Values of Geothermal Energy, October 2013, page 12. [5] Tiwari, G. N.; Ghosal, M. K. “Renewable Energy Resources: Basic Principles and Applications”, Alpha Science Int'l Ltd., 2005 ISBN 1-84265-125-0 [6] “US DOE EERE Hydrothermal Power Systems”. eere.energy.gov (22 February 2012). Retrieved 2013-12-13. [7] “Comparative Analysis of Approaches to Geothermal Resource Risk Mitigation”. Energy Sector Management Assistance Program (ESMAP), Knowledge Series 024/2016. Page 2. [8] R.K. Pachauri and L.A. Meyer (eds.), “2014: Climate Change 2014: Synthesis Report,” Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 pp. [9] Chen, C.H., 1989. Spring and geothermal in Taiwan (written in Mandurian: 臺灣的溫泉和地熱), in: Ti-Chih. pp. 327–340. [10] Liu, C.M., Song, S.R., Kuo, C.H., 2015. Silica Geothermometry Applications in the Taiwan Orogenic Belt. Terr. Atmospheric Ocean. Sci. 26, 387–396. doi:10.3319/Tao.2015.02.09.01(Tt). [11] 經濟部能源局, “107年全國電力資源供需報告”, page 9, 2018. [12] 王乾盈, “台灣北部地熱鑽井計畫”, 第二期能源國家型科技計畫,地熱 103-106, 2017. [13] 江協堂,“台灣東北部宜蘭平原及龜山島之地熱研究”,台灣大學海洋研究所博士論文,July 2010. [14] Duchane, D., Brown, D., 2002. Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. Geo-Heat Cent. Q. Bull. 23, 13–19. [15] Dobson, P., 2013. Enhanced Geothermal Systems - DOE Field Demonstration Projects, R D Innovations, and Roadmapping Efforts. Presented at the APEC Workshop on Geothermal Energy Development. [16] Bohdan M Zakiewicz, 'Closed Loop, Hot Dry Rock Heat Recovery Process', U.S. Patent 8020382 B1, 2011. [17] Yekoladio, P.J., Bello-Ochende, T., Meyer, J.P., 2013. Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). Renew. Energy 55, 128–137. doi:10.1016/j.renene.2012.11.035 [18] Gopi Nalla,“Parametric sensitivity study of operating and design variables in wellbore heat exchangers”, Journal of Geothermic (2005). Vel.34. 330-346. [19] Peixue Jiang, Xiaolu Li, Ruina Xu, Fuzhen Zhang, “Heat extraction of novel underground well pattern systems for geothermal energy exploitation”, Journal of Renewable Energy (2016). Vel.90. 83-94. [20] Gilberto Saccorotti et al., “The deep structure of the Larderello-Travale geothermal field (Italy) from integrated, passive seismic investigations”, Energy Procedia 59, 227 – 234, 2014. [21] R. Parri, F. Lazzeri, “Larderello: 100 years of geothermal power plant evolution in Italy”, Unione Nazionale Geotermica, Pisa, Italy. Geothermal Power Generation. Ch. 19, pp. 537-589, 2016. [22] Dipippo R. Evolution of geothermal power plants. Perform Assess Geotherm 2015;53: pp. 291-307. [23] W. Harvey, K. Wallace, “Flash steam geothermal energy conversion systems: single-, double-, and triple-flash and combined-cycle plants”, POWER Engineers, Hailey, Idaho, United States. Geothermal Power Generation. Ch. 10, pp.249-290, 2016. [24] Harry Zvi Tabor, Cleveland Cutler, “Encyclopedia of the Earth”, 2007. [25] M. Kukurugyová, “COMPARISON OF WORKING FLUIDS FORORC GEOTHERMAL POWER PLANT ĎURKOV”, ISeC 2015 – Interdisciplinary Scientific eConference, July 2015. [26] DiPippo R. Geothermal power plants: principles, applications, case studies, and environmental impact. 3rd ed. Oxford, UK: Butterworth-Heinemann; 2012. [27] Arthur L. (Roy) Austin, Lawrence Livermore Laboratory, “Status of the Development of the Total Flow System for Electric Power Production from Geothermal Energy”, A SOURCEBOOK ON THE PRODUCTION OF ELECTRICITY FROM GEOTHERMAL ENERGY Chapter 4, Section 4.4, April 1978. [28] D.S. Benzon et al., “Development of the Turgo Impulse Turbine Past and present”, Applied Energy 166, 1~18, 2016. [29] Wilson PN, Water Turbines, HMSO/Science Museum, 1974. [30] Bryan R. Cobb, Kendra V. Sharp, “Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations”, Renewable Energy 50 959~964, 2013. [31] Ravi Koirala, Bhola Thapa, Hari Prasad Neopane, Baoshan Zhu, “A review on flow and sediment erosion in guide vanes of Francis turbines”, Renewable and Sustainable Energy Reviews Volume 75, Pages 1054-1065, August 2017. [32] Brennen, Christopher. 'Cavitation and Bubble Dynamics'. Oxford University Press. p. 21. Retrieved 27 February 2015. [33] Ram Chandra Adhikari, Jerson Vaz, and David Wood, 'Cavitation Inception in Crossflow Hydro Turbines', Energies, 2016, 9, 237, March 2016. [34] E.F. Lindsley, 'Water power for your home, Popular Science', May 1977, Vol. 210, No. 5, 87-93. [35] 'New Austrian Stamps'. The Sun (1765). Sydney. 24 January 1937. p. 13. Retrieved 10 March 2017 [36] HLADKY, GREGORY B. 'Archimedes Screw Being Used To Generate Power At Meriden Dam'. courant.com. Retrieved 2017-08-01. [37] Pardeep Kumar, R.P. Saini, “Study of cavitation in hydro turbines—A review”, Renewable and Sustainable Energy Reviews, 14, 374~383, 2010. [38] ITRI, “宜蘭縣清水地熱區IC-9、IC-13、IC19地熱井修井後產能測試成果摘要”, 2015-10. [39] Tsai, G.C., Chen, S.J., 2017. IC9 geothermal well monitoring data and power measurements for total flow geothermal generator (written in Mandurian: IC9地熱井數據量測及全流式地熱發電機效能測試). CAE Composite Materials Laboratory, National Ilan University. [40] L. S. HERBERT and U. J. STERNS., 1971. Heat Transfer in Vertical Tubes-Interaction of Forced and Free Convection. The Chemical Engineering Journal, Elsevier. Received 21 January, 1971; in revised form 24 August, 1971. [41] 葛佳宇,“拉格朗日有限體積法於漸縮漸擴噴嘴中超音速液氣兩相流之數值研究”,台灣大學機械研究所碩士論文,Jan 2019. [42] B. Evans and R. L. Ritter III (2015), “Flashing and cavitation”, Valve Magazine. [43] B. Ebrahimi, G. He, Y. Tang, M. Franchek, D. Liu, J. Pickett, F. Springett, and D. Franklin (2017), “Characterization of high-presuure cavitating flow through a thick orifice plate in a pipe of constant cross section”, International Journal of Thermal Sciences 114, pp.229-240. [44] J. D. Anderson (2003), “Modern compressible flow : with historical perspective”, Boston(Mass.) : McGraw-Hill. [45] S. Venkateswaran, J. W. Lindau, R. F. Kunz, and C. L. Merkle (2002), “Computationof multiphase mixture flows with compressibility effects”, Journal of Computational Physics,Vol.180, pp.54-77. [46] D. G. Elliott (1982), “Theory and tests of two-phase turbines”, Jet Propulsion Laboratory Publication, pp.81-105. [47] S.J. Williamson , B.H. Stark, J.D. Booker “Performance of a low-head pico-hydro Turgo turbine”, Applied Energy 102 1114–1126, 2013. [48] R. F. Tangren, C. H. Dodge, and H. S. Seifert, “Compressibility effects in twophase flow”, J. Appl. Phys., Vol.20, pp.637-645. 1949. [49] S. Zarrouk, H. Moon, Efficiency of geothermal power plants: A worldwide review, Geothermics, Vol. 51, pp. 142-153, 2014. [50] Jean-François Oudkerk et al., “Evaluation of the Energy Performance of an Organic Rankine Cycle-Based Micro Combined Heat and Power System Involving a Hermetic Scroll Expander”, J. Eng. Gas Turbines Power 135(4), 042306, Mar 18, 2013. [51] Maciej Z. Lukawski, Brian J. Anderson, Chad Augustine, Louis E. Capuano Jr., Koenraad F. Beckers, Bill Livesay, Jefferson W. Tester., “Cost analysis of oil, gas, and geothermal well drilling”, Journal of Petroleum Science and Engineering, 118, 1–14. 2014. [52] Christopher Earls Brennen, “HYDRODYNAMICS OF PUMPS”, Concepts NREC and Oxford University, ISBN 0-933283-07-5, 1994. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72649 | - |
| dc.description.abstract | 本研究提出了一種全流式地熱發電廠的創新設計,並對其進行相關理論、實驗及數值分析,最後於宜蘭清水進行現地試驗。本設計的創新在於地底取熱及發電機組兩個子系統。其中於地底取熱子系統的設計,本研究使用了同軸雙套管於地底形成流體的閉迴路進行取熱;而於發電機組子系統中,本研究設計使用了Turgo渦輪與超音速二相流噴嘴以進行全流式發電。 地底取熱系統的設計利用了水通過同軸的雙套管於地底進行閉迴路取熱。當液態水由同軸雙套管間的環形空間流往地底,液態水會被熱岩層加熱及加壓。在流至同軸雙套管尾端時,高壓的過冷液態水以閉迴路方式流向內管,再沿內管流回地表供發電使用。本研究使用了自行開發的半經驗數值方法進行同軸閉迴路地底取熱系統的數值分析。由於流體熱對流的經驗式以隱式方式與岩層固體熱傳導方程式耦合,得以避免進行同軸閉迴路套管中複雜流體運動的模擬。因此,此半經驗數值方法能有效率地計算同軸閉迴路套管中流體與岩石圈中乾熱岩岩層中岩石固體的流固耦合熱傳問題。本研究模擬了在不同井深和不同流體質量流率下,於宜蘭清水地區以此系統取熱的熱傳。首先,此數值方法以宜蘭大學進行的現地試驗進行驗證。模擬所得在不同流體質量流率下2000公尺深井的套管出口流體溫度與現地試驗結果十分吻合。再來,進行在不同質量流率下,經過連續20年的取熱模擬。模擬顯示不管質量流率為何,5000公尺深井取熱影響區域的最大半徑均約為100公尺。流體質量流率越大,取熱速度越大且井壁溫度越低。此方法可於極短的計算時間內計算出井壁溫度,與國家高速計算中心使用Ansys CFX的三維模擬結果亦十分吻合。 1978年美國勞倫斯實驗室(Lawrence Livermore Laboratory)以理論預測全流式地熱發電的發電效能可高過主流的閃發式地熱發電。本研究為了更多地利用高壓井水的熱焓並且避免於渦輪葉片表面發生孔蝕現象,發電機組的設計使用了Turgo渦輪與漸縮漸擴噴嘴進行全流式發電。當高壓的過冷液體通過漸縮漸擴噴嘴後會形成高速的閃發噴射流,並以斜角度衝擊Turgo渦輪的渦輪葉片來驅動Turgo渦輪。此新穎設計可在不使用任何汽水分離器或熱交換器下,直接轉換來自高壓井水的地熱能,也因此設計出的系統簡單且易於維護。由簡單的控制體積和速度三角分析可得知,噴嘴出口射流速度及射流衝擊葉片的角度決定了系統的熱效率和發電量,且系統的最高功率發生在渦輪葉片的尖端速度約為噴嘴出口射流速度的一半時。為了驗證理論分析的結果,本研究建造了全流式地熱發電機的原型並於2015至2020間在宜蘭清水地熱九號井進行現地試驗。長達四年的現地試驗顯示此設計成功避免孔蝕問題的發生,並且全流式發電機原型的發電效能與勞倫斯實驗室的理論曲線相當吻合。與傳統的有機朗肯循環發電機相比,此新穎設計的發電效能在熱源為中低焓值熱庫(熱庫溫度≥150℃)時較有競爭力。 結合同軸閉迴路地底取熱系統與全流式斜衝擊型發電機而成的全流式地熱發電廠,是有可長時間發電、簡單易於維護、適用熱源溫度範圍廣等優點的穩健系統。因此,此新式全流式地熱發電廠,不管對地熱能源的學界或業界來說,都是有發展性、極具潛力的應用。 | zh_TW |
| dc.description.abstract | In this study, we propose a novel design of total flow geothermal power plant. This design is analyzed theoretically, experimentally and numerically, and field-tested in Qingshui, Yi-Lan. The innovation of this design is in two subsystems: the underground heat extraction system and the geothermal power generator. In the underground heat extraction system, fluid flows in the co-axial tubes to form a closed loop underground for heat extraction; in the geothermal power generator, our design uses Turgo turbine and supersonic two-phase nozzles for total-flow power generation. The design of the heat extraction system utilizes co-axial tubes for underground closed-loop heat extraction. As the liquid water flows in the annulus of the co-axial tubes to the underground, it is heated and pressurized by the hot rock layers. At the end of the co-axial tubes, the high-pressure compressed liquid water flows toward the inner tube in a closed-loop manner and then flows toward the ground surface along the inner tube for power generation. We numerically investigate the co-axial closed-loop heat extraction system using an in-house semi-empirical numerical method. Empirical equations for convective heat transfer of the fluid are coupled implicitly with heat conduction equation of the solid rock layers to avoid detail simulation of the complex fluid motion in the co-axial closed-loop tubes. Therefore, this semi-empirical method is able to efficiently solve the heat transfer problem involving flow-structure interaction between the fluid flow in the co-axial closed-loop tubes and the solid hot-dry-rock layers in the lithosphere. We simulate the heat transfers of the system in Qingshui, Yi-Lan with various well depths and various fluid mass flow rates. First, the method is validated by the field-tests performed by Yi-Lan University. The output fluid temperatures for a 2100m-depth well at various fluid mass flow rates obtained from simulations show well agreement with the field tests. Second, continuously 20-year heat extractions at various fluid mass flow rates are simulated. Simulations show that regardless of the fluid mass flow rates, the temperature-drop area affected by a 5000m-depth well has a maximum radius of about 100 m. The larger fluid mass flow rate, the greater heat extraction rate and the lower well surface temperature. The well surface temperature simulated by the in-house code in a competitively short computational time is also well agreed with 3D simulation performed by National Center for High-Performance Computing (NCHC) using Ansys CFX. In 1978, Lawrence Livermore Laboratory in the United States theoretically predicted that total-flow generators have a better performance than main-stream flash generators. In order to maximize the enthalpy utility of high-pressure compressed liquid from the well and to prevent the onset of cavitation on the surfaces of turbine blades, the design of power generator uses Turgo turbine and converging-diverging (CD) nozzles for total-flow power generation. The high-speed flashing jets are formed by high-pressure compressed liquid from the well through the CD nozzles and impinge turbine blades obliquely to drive the Turgo turbine. This novel design is able to convert geothermal power directly from the geothermal fluid without implementing any phase separator or heat exchanger, which results in a simple and easy-to-maintain system. From a simple control-volume analysis, the thermal efficiency and the power generation of the system are determined by the jet speed at the nozzle exit and the impact angle between the flashing jet and the blade surface, and the maximum power generation occurs when the tip speed of Turgo turbine blade is about half of the jet speed at the nozzle exit. In order to validate the results from the theoretical analysis, a prototype of the total-flow geothermal power generator is built and field-tested at the No.9 Qingshui Geothermal Well in Yi-Lan from 2015 to 2020. The four-year-long field testing shows that the design successfully prevents cavitation on blade surfaces and the performance of the prototype agrees well with the theoretical curve predicted by the Lawrence Laboratory. Compared with traditional Organic Rankine Cycle (ORC) generators, the new design has a competitive geothermal efficiency when it operates at moderate reservoir enthalpy (reservoir temperature≥150℃). The total-flow geothermal power plant that combines the co-axial closed-loop heat extraction system and the total-flow power generator is a robust system that is capable of long-time geothermal power generation, simple, low-cost, easy-to-maintain, and adaptable for a wide range of reservoir temperatures. Therefore, for both academy and industry in geothermal energy, this novel total-flow geothermal power plant is an intriguing and promising application with potentials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:45Z (GMT). No. of bitstreams: 1 U0001-1101202113241000.pdf: 12712228 bytes, checksum: 4b2450f3a8f953c930f2a858d4c5afe5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iv 目錄 vii 表目錄 ix 符號說明 xvi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 各種地底取熱方式 3 1.2.2各種現有地熱發電機組介紹 4 1.2.3美國勞倫斯實驗室的全流式地熱發電研究 11 1.2.4各種水力渦輪介紹 12 1.3 研究動機與目的 16 1.3.1閉迴路地底取熱可能性之模擬 16 1.3.2全流式地熱發電之研發與實測 17 1.3.3全流式地熱發電結合閉迴路地底取熱新型地熱電廠可能性 18 1.4 本研究系統架構 19 1.4.1閉迴路井下取熱基本原理與理論分析 19 1.4.2直接使用地熱全流式發電機試驗 20 1.4.3全流式地熱發電與世界既有電廠比較並結合閉迴路取熱 22 1.5 研究場域和流量量測設備介紹 23 第二章 閉迴路井下取熱基本原理與理論分析模式 28 2.1 物理模型初始和邊界條件 29 2.2 固液熱傳快速計算方法 33 2.2.1 同軸雙套管內熱傳計算 33 2.3 簡易現場實驗條件和介紹 40 2.3.1 抗腐蝕試驗 40 2.3.2 保溫管路設計和下管 47 2.4 模擬結果 53 2.4.1 驗證 53 2.4.2 計算結果與商用軟體比較 57 第三章 全流式地熱發電系統基本原理 72 3.1 全流式發電系統研發緣起與設計 72 3.1.1 研發背景 72 3.1.2 全流式發電機組概述 73 3.1.3 研發歷程 76 3.2 全流式發電機組設計原理與分析 86 3.2.1 兩相流漸縮漸擴加速噴嘴設計與實驗 86 3.2.2 斜衝擊式渦輪設計 95 3.3 直接使用地熱流體全流式發電機組現地試驗 102 3.3.1 實驗系統 102 3.3.2 實驗與計算 104 3.4 實驗結果與討論 106 3.4.1 射流入射角分析 106 3.4.2 出口射流速度分析 106 3.4.3 判斷等焓膨脹或等熵膨脹 109 3.4.4 渦輪直徑和地熱井流量 110 3.4.5 尖端速度比(TSR)和熱效率之關聯 113 3.4.6 和勞倫斯實驗室(LLL)理論比較 117 3.5 可靠性分析 119 3.5.1 渦輪發生孔蝕現象與否 119 3.5.2 地熱流體結垢情況 122 第四章 與現有地熱電廠比較和複循環系統可能性 125 4.1 現有地熱電廠效能與比較 125 4.1.1 本設計全流式發電機和ORC系統比較 125 4.1.2 各地熱電廠熱庫焓值與熱效率 127 4.2 結合其他系統成為複循環系統可能性 130 4.3 全流式發電結合地底閉迴路取熱系統可能性 132 第五章 結論與建議 140 5.1 結論 140 5.1.1 地下閉迴路取熱系統 140 5.1.2 全流式發電系統 141 5.2 建議 142 參考文獻 144 | |
| dc.language.iso | zh-TW | |
| dc.subject | Turgo渦輪 | zh_TW |
| dc.subject | 地熱發電 | zh_TW |
| dc.subject | 同軸閉迴路地底取熱 | zh_TW |
| dc.subject | 全流式地熱發電 | zh_TW |
| dc.subject | 全流式斜衝擊型 | zh_TW |
| dc.subject | 中低焓值熱庫 | zh_TW |
| dc.subject | Total-flow oblique impulse generator | en |
| dc.subject | Underground close-loop heat extraction | en |
| dc.subject | Low enthalpy heat reservoir | en |
| dc.subject | Geothermal power plant | en |
| dc.subject | Turgo turbine | en |
| dc.title | 使用Turgo渦輪與同軸閉迴路地熱取熱系統之全流式地熱發電廠創新設計 | zh_TW |
| dc.title | A Novel Design of Total-Flow Geothermal Power Plant Using Turgo Turbines and Co-Axial Closed-Loop Heat Extraction System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳希立(Sih-Li Chen),蔡國忠(GUO-ZHONG TSAI),顏維謀(WEI-MOU YAN),盧昭暉(Jau Huai Lu),王建評(CHIEN-PING WANG) | |
| dc.subject.keyword | 地熱發電,同軸閉迴路地底取熱,全流式地熱發電,全流式斜衝擊型,中低焓值熱庫,Turgo渦輪, | zh_TW |
| dc.subject.keyword | Geothermal power plant,Underground close-loop heat extraction,Total-flow oblique impulse generator,Low enthalpy heat reservoir,Turgo turbine, | en |
| dc.relation.page | 147 | |
| dc.identifier.doi | 10.6342/NTU202100042 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1101202113241000.pdf 未授權公開取用 | 12.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
