Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪傳揚
dc.contributor.authorYing-Hua Wuen
dc.contributor.author吳映樺zh_TW
dc.date.accessioned2021-06-17T07:02:20Z-
dc.date.available2019-08-06
dc.date.copyright2019-08-06
dc.date.issued2019
dc.date.submitted2019-07-30
dc.identifier.citation戶刈義次 (1963) 作物學試驗法 東京農業技術學會印行 第159-176頁
李易整 (2014) 水稻穀胱甘肽還原酶 2 (OsGR2) 基因功能分析。國立臺灣大學農業化學所碩士論文。
楊翎虹 (2015) 水稻穀胱甘肽還原酶 1 (OsGR1) 調控側根發育之研究。國立臺灣大學農業化學所碩士論文。
Aono, M., Kubo, A., Saji, H., Tanaka, K., and Kondo, N. (1993). Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34, 129-135.
Aono, M., Saji, H., Fujiyama, K., Sugita, M., Kondo, N., and Tanaka, K. (1995). Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol 107, 645-648.
Bailey-Serres, J., and Mittler, R. (2006) The role of reactive oxygen species in plant cells. Plant Physiol 141, 311.
Ball, L., Accotto, G.P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., Karpinski, S., Mullineaux, P.M. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16, 2448-2462.
Bashir, K., Nagasaka, S., Itai, R.N., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2007). Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65, 277-284.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle pf protein-dye binding. Anal Biochem 27, 248-254.
Burke, J.J., and Hatfield , J.L. (1987). Plant morphological and biochemical responses to field water deficits: Ⅲ. effect of foliage temperature on the potential activity of glutathione reductase. Plant Physiol 85, 100-103.
Cai, Y., Lin, L., Cheng, W., Zhang, G., and Wu, F. (2010). Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptake and accumulation in rice seddlings (Oryza sativa). Plant Soil Environ 56, 516-525.
Cai, Y., Cao, F.B., Cheng, W.D., Zhang, G.P., and Wu F.B. (2011). Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biol Trace Elem Res 143, 1159-1173.
Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., and Meyer, A.J. (2006). Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141, 446-455.
Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G., and Bennett, M.J. (2003). Dissecting Arabidopsis lateral root development. Trands Plant Sci 8, 165-171.
Chen, C.W., Yang, Y.W., Lur, H.S., Tsai, Y.G., and Chang, M.C. (2006). A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47, 1-13.
Connell, J.P., and Mullet, J.E. (1986) Pea chloroplast glutathione reductase purification and characterization. Plant Physiol 82, 351-356.
Contour-Ansel, D., Torres-Franklin, M.L., Cruz, D.E.C.M.H., D’Arcy-Lameta, A., and Zuily-Fodil, Y. (2006). Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive frought stress, desiccation and abscisic acid treatment. Ann Bot 98, 1279-1287.
Darwin, C. (1880). The power of movement in plants. John Murray, London.
Debi, B.R., Taketa, S., and Ichii, M. (2005). Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162, 507-515.
Foyer, C., Lelandais, M., Galap, C., and Kunert, K.J. (1991). Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97, 863-872.
Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155, 2-18.
Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., and Salt, D.E. (2004). Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16, 2176-2191.
Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science 282, 2226-2230.
Gill, S.S., Anjum, N.A., Hasanuzzaman, M., Gill, R., Trivedi, D.K., Ahmad, I., Pereira, E., and Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operation. Plant Physiol Biochem 70, 204-212.
Hagen, G. and Guilfoyle, T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49, 373-385.
Hetz, W., Hochholdinger, F., Schwall, M., Feix, G. (1996). Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10, 845-857.
Hong, C.Y., Chao, Y.Y., Yang, M.Y., Cho, S.C., and Kao, C.H. (2009a) Na+ but not Cl- or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. J Plant Physiol 166, 1598-1606.
Hong, C.Y., Chao, Y.Y., Yang, M.Y., Cheng, S.Y., Cho, S.C., and Kao, C.H. (2009b) NaCl-induced expression pf glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320, 103-115.
Hoshikawa, K. (1989). The growing rice plant : an anatomical monograph. Tokyo : Nobunkyo.
Inahashi, H., Shelley, I.J., Yamauchi, T., Nishiuchi, S., Takahashi-Nosaka, M., Matsunami, M., Ogawa, A., Noda, Y., Inukai, Y. (2018). OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant 164, 216-225.
Ishimaru, Y., Hayashi, K., Suzuki, T., Fukaki, H., Prusinska, J., Meester, C., Quareshy, M., Egoshi, S., Matsuura, H., Takahashi, K., Kato, N., Kombrink, E., Napier, R.M., Hayashi, K., Ueda, M. (2018). Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. Plant Physiol 177, 1704-1716.
Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Shibata, Y., Gomi, K., Umemura, I., Hasegawa, Y., Ashikari, M., Kitano, H., and Matsuoka, M. (2005). Crown rootless 1, which is essential for crown root formation in rice, is a target of an Auxin Response Factor in auxin signaling. Plant Cell 17, 1387-1396.
Jiang, J., Li, J., Xu, Y., Han, Y., Bai, Y., Zhou, G., Lou, Y., Xu, Z., Chong, K. (2007) RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Plant Cell Environ 6, 690-699.
Jiang, X., He, J., Cheng, P., Xiang, Z., Zhou, H., Wang, R., Shen, W. (2018). Methane control of adventitious rooting requires γ-glutamyl cysteine synthetase-mediated glutathione homeostasis. Plant Cell Physiol 60, 802-815.
Jung, J.K.H., and McCouch, S. (2013). Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4, 186.
Kaminaka, H., Morita, S., Nakajima, M., Masumura, T., and Tanaka, K. (1998). Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39, 1269-1280.
Kant, S. and Rothstein, S. (2009). Auxin-responsive SAUR39 gene modulates auxin level in rice. Plant Signal Behav 4, 1174-1175.
Kerk, N.M., Jiang, K., and Feldman, L.J. (2000). Auxin metabolism in the root apical meristem. Plant Physiol. 122, 925-932.
Kocsy, G., Szalai, G., Vagujfalvi, A., Stehli, L., Oeosz, G., and Galiba, G. (2000). Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210, 295-301.
Koprivova, A., Mugford S.T., and Kopriva, S. (2010). Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29, 1157-1167.
Korasick, D.A., Enders, T.A., Strader, L.C. (2013). Auxin biosynthesis and storage forms. J Exp Bot 64, 2541-2555.
Kornyeyev, D., Logan, B.A., Payton, P.R., Allen, R.D., and Holaday, A.S. (2003) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photo inhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct Plant Biol 30, 101-110.
Kuo, C.H. (2013). Role of rice heme oxygenase in lateral root formation. Plant & behavior 8, doi: 10 4161/psb 25 766.
Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V., Parizot, B., Herrera-Rodriguez, M.B., Offringa, R., Graham, N., Doumas, P., Friml., J., Bogusz, D., Beeckman, T., and Bennett, M. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19, 3889-3900.
Ma, B., Gao, L., Zhang, H., Cui, J., Shen, Z. (2012). Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31, 687-696.
Malamy, J.E., and Benfey, P.N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33-44.
Marquez-Garcia, B., Njo, M., Beeckman, T., Goormachtig, S., Foyer, C.H. (2014). A new role for glutathione in the regulation of root architecture linked to strigolactones. Plant Cell Environ 37, 488-498.
Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L., Pereira, A. (2002). Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129, 1544-1556.
Marty, L., Siala, W., Schwarzlander, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J., Meyer, Y., Meyer, A.J., Reichheld, J.P., and Hell, R. (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. PNAS 106, 9109-9114.
Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y., and Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. PNAS 108, 18512-18517.
Mhamdi, A., Han, Y., and Noctor, G. (2013). Glutathione-dependent phytohormone response: teasing apart signaling and antioxidant functions. Plant Signal Behav 8, e24181.
Miyashita, Y., Takasugi, T., and Ito, Y. (2010). Identification and expression analysis of PIN genes in rice. Plant Sci 178, 424–428.
Mostofa, M.G., Seraj, Z.I., Fujita, M. (2014). Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251, 1373-1386.
Negi, S., Ivanchenko, M.G., and Muday, G.K. (2008). Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55, 175-187.
Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C.H. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ 35, 454-484.
Paponov, I.A., Teale,W.D., Trebar, M., Blilou, I., and Palme, K. (2005). The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10, 170–177.
Par, H.C., Hwang, J.E., Jiang, Y., Kim, Y.J., Kim, S.H., Nguyen, X.C., Kim, C.Y., Chung, W.S. (2019) Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. Plant Biol doi: 10.1111/plb.12991.
Park, S.I., Kim, Y.S., Kim, J.J., Mok, J.E., Kim, Y.H., Park, H.M., Kim, I.S., Yoon, H.S. (2017). Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J Plant Physiol 215, 39-47.
Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C.S., and Meyer, A.J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53, 999-1012.
Phillips, K.A., Skirpan, A.L., Liu, X., Christensen, A., Slewinski, T.L., Hudson, C., Barazesh, S., Cohen. J.D., Malcomber, S., McSteen, P. (2011). vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23, 550-566.
Qin, H., Wang, J., Chen, X., Wang, F., Peng, P., Zhou, Y., Miao, Y., Zhang, Y., Gao, Y., Qi, Y., Zhou, J., Huang, R. (2019). Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol 2, 798-813.
Rayle, D.L. and Cleland, R.E. (1992). The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99, 1271-1274.
Robert, H. S., and Friml, J. (2009). Auxin and other signals on the move in plants. Nat Chem Bio 5, 325–332.
Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463-472.
Shi, Y.F., Wang, D.L., Wang, C., Culler, A.H., Kreiser, M.A., Suresh, J., Cohen, J.D., Pan, J., Baker, B., Liu, J.Z. (2015). Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol Plant 8, 1350-1365.
Shkolnik-Inbar, D., and Bar-Zvi, D. (2010). ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22, 3560-3573.
Strader, L.C. and Bartel, B. (2008). A new path to auxin. Nat Chem Biol 4, 337-339.
Tal, A., Romano, M.L., Stephenson, G.R., Schwan, A.L., and Hall, J.C. (1993). Glutathione conjugation – a detoxification pathway for fenoxaprop-ethyl in barley, crabgrass, oat, and wheat. Pestic Biochem Phys 46, 190-199.
Thimann K.V. (1938). Hormones and the analysis of growth. Plant Physiol 13, 437–449.
Thimann, K.V. and Skoog, F. (1934). On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc R Soc Lond B 114, 317-339.
Tzafrir, I., Pena-Muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., Sweeney, T.C., McElver, J., Aux, G., Patton, D., and Meinke, D. (2004). Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135, 1206-1220.
Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.P., Muroy, S., Brown, S., Maughan, S.C., Cabbette, S.C., Van Montagu, M., Inze, D., May, M.J., and Sung, X.R. (2000). The Root Meristemless 1 / Cadmium Senitive 2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97-109.
Vivancos, P.D., Wolff, T., Markovic J., Pallardo, F.V., and Foyer, C.H. (2010a). A nuclear glutathione cycle within the cell cycle. Biochem J 431, 169-178.
Vivancos, P.D., Dong, Y.P., Ziegler, K., Markovic J., Pallardo, F.V., Pellny, T.K., Verrier, P.J., and Foyer, C.H. (2010b). Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defense shield. Plant J 64, 825-838.
Wang, J.R., Hu, H., Wang, G.H., Li, J., Chen, J.Y., Wu, P. (2009). Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol Plant 2, 823-831.
Went, F. W. (1935). Auxin, the plant growth-hormone. Bot Rev 1, 162-182.
Wu, T.M., Lin, W.R., Kao, Y.T., Hsu, Y.T., Yeh, C.H., Hong, C.Y., and Kao, C.H. (2013). Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Mol Biol 83, 379-390.
Xu, M., Zhu, L., Shou, H., Wu, P. (2005). A PIN family gene, OsPIN1, involved in auxindependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46, 1674-1681.
Xu, N., Chu, Y.L., Chen, H.L., Li, X.X., Wu, Q., Jin, L., Wang, G.X., Huang, J.L. (2018). Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA–mediated regulatory pathway and ROS scavenging. PLoS Genet 10, e1007662.
Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., Sazuka, T. (2007). Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143, 1362-1371.
Yin, L., Mano, J., Tanaka, K., Wang, S., Zhang, M., Deng, X., Zhang, S. (2017). High level of reduced glutathione contributes to detoxification of lipid peroxide‐derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol Plant 161, 211-223.
Yu, X., Pasternak, T., Eiblmeier, W., Ditengou, F., Kochersperger, P., Sun, J., Wang, H., Rennenberg, H., Teale, W., Paponov, I., Zhou, W., Li, C., Li, X., and Palme, K. (2013). Plastid-localized glutathione reductase 2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25, 4451-4468.
Zechmann, B., Koffler, B.F., and Russell, S.D. (2011). Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biology 11, 54.
Zhao, H., Ma, T., Wang, X., Deng, Y., Ma, H., Zhang, R., and Zhao, J. (2015). OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant Cell Environ 38, 2208-2222.
Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61, 49-64.
Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D., Chory, J. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306-309.
Zheng, H., Pan, X., Deng, Y., Wu, H., Liu, P., Li, X. (2016) AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 6, 24778.
Zhu, D., Mei, Y., Shi, Y., Hu, D., Ren, Y., Gu, Q., Shen, W., Chen, X., Xu, L., Huang, L. (2016). Involvement of glutathione in β-cyclodextrin-hemin complex-induced lateral root formation in tomato seedlings. J Plant Physiol 204, 92-100.
Zhu, Y.L., Pilon-Smits, E.A., Tarun, A.S., Weber, S.U., Jouanin, L., Terry, N. (1999). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121, 1169-1177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72632-
dc.description.abstract植物體內的穀胱甘肽 (GSH) 在平衡氧化還原狀態、抵抗非生物逆境及傳遞分子訊息等方面皆扮演關鍵的角色。實驗室過去的研究發現弱化GR1 表達會抑制水稻側根生成及伸長,本研究進一步釐清 GSH 含量以及氧化還原狀態對水稻幼苗根系發育與 Auxin 傳輸之影響。試驗中對水稻幼苗外加 GSH 或 GSSG 處理都會顯著縮短水稻種子根主根長度,並同時減少側根數量和長度,分析 OsGR1弱化表現與大量表現的水稻植株根部,也發現兩轉殖株的主根均較野生型短,其中大量表現型主根最短且側根數量和密度也最低,這些結果顯示GSH / GSSG 比例的改變,會抑制種子根主根和側根生長;以受 Auxin 誘導之 DR5::GUS 轉殖水稻進行組織化學染色分析,結果顯示對照組的 GUS 主要分佈在靠近主根和側根根冠、根尖及延長部,而無論外加 GSH 或 GSSG 都會擴大 GUS 在種子根內之分佈位置;以 GSH 處理 GR1-Ri x DR5::GUS 雜交水稻,能增加主根和側根的 Auxin 分佈且原來生長受抑制的側根能恢復至野生型的水準,顯示 GSH 氧化還原狀態在根部內生長素的傳輸及分佈中扮演關鍵的角色。另一方面,外加 GSH 生合成抑制劑 BSO 會抑制內生 GSH 總生成量及側根生長,而不會影響主根伸長。但隨著 BSO濃度增加,GUS 分佈位置逐漸縮小,最後侷限於近延長部與其附近側根中。同時 GUS 的活性也隨著 BSO 處理濃度增加而逐漸降低,中柱兩側的向基運輸 (Basipatel transport) 明顯減弱並造成主根蜷曲、側根發育嚴重缺陷,顯示 GSH 生合成總量對根部內生長素的傳輸及分佈佔有相當重要的地位,而大量表現GR1 (GR1-OE x DR5::GUS) 能減緩 BSO 對 GUS 分佈及側根長度的抑制。藉由RT-PCR分析 Auxin 相關基因的表現,結果發現水稻內不同 GSH 總量或 GSH / GSSG 比例對運輸載體基因 (OsAUX1 和 OsPINs) 和生合成酵素基因 (OsYUCCA5) 都有迥異的表現差異。以上結果說明水稻內 GSH 含量多寡與氧化還原比例都會影響根系內 Auxin 的生合成、運輸與分佈,進而調控主根和側根的生長與發育。zh_TW
dc.description.abstractGlutathione plays a critical role in plant, for example, balancing redox status, resisting abiotic stress, and signaling molecular message. Based on our past research, we found that knockdown of OsGR1 inhibited lateral root formation and elongation. This study clarified the effect of GSH level and redox ratio on root development and auxin transport in rice seedling. In seminal root, the primary root length shortened, lateral root number and length decreased significantly after treating with GSH and GSSG. Phenotyping analysis showed that OsGR1 transformation lines [GR1-Ri (RNA interference) and GR1-OE (Overexpression)] had poorer root development than wild type, especially in overexpression line. These outcomes implied that the changes of GSH / GSSG ratio inhibited primary and lateral root growth. The auxin-inducible promoter DR5 was applied to trace the presence of auxin. In transgenic rice line (DR5::GUS), the distribution of GUS was just located near root caps and root tips of primary and lateral roots. However, regardless of treating with GSH or GSSG, the GUS distributed in whole seminal root evenly. The poor auxin distribution and lateral root length of GR1-knockdown line (GR1-Ri x DR5::GUS) could be recovered by treating with 2 mM GSH, which means that GSH redox status plays an important role in transportation and distribution of auxin. On the other hand, the primary root length wasn’t affected by buthionine sulfoximine (BSO), a GSH biosynthesis inhibitor, but the GSH-lacking event caused a severe inhibition on lateral root number and length. The GUS distribution was confined near root tips and GUS activity was decreased as BSO concentration increased. Meanwhile, the basipetal transport around the stele in root weakened significantly, and caused curly primary root and defective development of lateral root. It showed that GSH content is essential to auxin transport and distribution as well. Overexpression of GR1 alleviated the inhibition on auxin distribution and lateral root growth caused by BSO. The expression of auxin-related genes under different GSH contents and GR expression levels was analyzed through RT-PCR, the results showed that auxin influx and efflux transport carrier genes, OsAUX1 and OsPINs etc., and auxin biosynthesis gene, OsYUCCA5, expressed in various levels compared with control or wild type. Overall, these results concluded that both GSH level and GSH / GSSG ratio influenced auxin biosynthesis, transport and distribution, thereby regulate the development of primary and lateral roots of seminal root in rice seedling.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:02:20Z (GMT). No. of bitstreams: 1
ntu-108-R05623018-1.pdf: 4237340 bytes, checksum: ea4c145d14ff365e849a744b18f12b9f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書
致謝
中文摘要…………………………………………………………………………….....i
Abstract……………………………………………………………………..………...iii
縮寫字對照表…………………………………………………………………………v
目錄…………………………………………………………………………………..vii
圖目錄…………………………………………………………………………………x
壹、前人文獻…………………………………………………………………………1
一、植物的抗氧化機制…………………………………………………………1
二、植物穀胱甘肽 (Glutathione, GSH) 的生理角色…………………………2
2.1 穀胱甘肽之簡介……………………………………………………….2
2.2 穀胱甘肽之生合成途徑……………………………………………….3
2.3 穀胱甘肽參與細胞週期……………………………………………….3
2.4 穀胱甘肽影響生長發育……………………………………………….3
三、植物穀胱甘肽還原酶 (Glutathione reductase, GR) 的特性與生理功能..5
3.1 GR 的生理構造………………………………………………………..5
3.2 GR 的生理功能………………………………………………………..5
3.3 水稻 GR 基因家族與生理功能……………………………………...6
四、植物生長素 (Auxin) 的生理角色………………………………………...6
4.1 生長素之簡介………………………………………………………….6
4.2 生長素之生合成途徑………………………………………………….7
4.3 生長素之極性運輸…………………………………………………….8
五、水稻根部之發育與調控……………………………………………………9
5.1 植物荷爾蒙交互作用調控根部發育………………………………….9
5.2 水稻主根發育之研究………………………………………………10
5.3 水稻側根發育之研究………………………………………………...11
貳、本論文研究目的及實驗架構…………………………………………………..12
參、材料與方法……………………………………………………………………..13
一、植物材料準備及生長條件………………………………………………..13
二、基因表現分析材料準備及處理…………………………………………..14
三、基因表現分析……………………………………………………………..16
四、水稻試驗處理及生理分析………………………………………………..17
五、根部生長素分佈與累積分析……………………………………………..20
六、統計分析…………………………………………………………………..20
肆、結果……………………………………………………………………………..21
一、GSH 相關物質處理對水稻幼苗種子根生長及生長素分佈之影響……21
二、OsGR1 轉殖株對水稻幼苗種子根生長及生長素分佈之影響…………23
三、穀胱甘肽含量調控水稻種子根內生長素分佈模式圖…………………..24
四、穀胱甘肽氧化還原狀態調節水稻種子根內生長素分佈模式圖………..24
伍、討論……………………………………………………………………………..25
一、穀胱甘肽含量影響水稻種子根生長與發育……………………………..25
二、穀胱甘肽含量改變根部內生長素相關基因表現………………………..26
三、穀胱甘肽含量改變根部內生長素分佈及含量…………………………..28
四、穀胱甘肽氧化還原比例 GSH / GSSG 恆定對水稻根部正常發展的重要性…………………………………………………………………………..29
五、穀胱甘肽氧化還原比例 GSH / GSSG 恆定對水稻根部內生長素相關基因表現的重要性…………………………………………………………..29
六、外加還原型穀胱甘肽 GSH 可促進弱化表現 OsGR1 的側根伸長與生長素分佈…………………………………………………………………..30
七、大量表現 OsGR1 能減緩逆境對生長素分佈與根部生長的抑制……..30
陸、參考文獻………………………………………………………………………..32
柒、附錄……………………………………………………………………………..57
一、水稻生長試驗培養基……………………………………………………..57
二、木村氏水耕液配方………………………………………………………..57
三、變性膠體電泳分析………………………………………………………..58
四、GUS 染色配方……………………………………………………………61
五、本論文基因表現分析使用的引子列表…………………………………..61
dc.language.isozh-TW
dc.subject生長素zh_TW
dc.subject穀胱甘?zh_TW
dc.subject穀胱甘?還原?zh_TW
dc.subject水稻zh_TW
dc.subject根部發育zh_TW
dc.subjectGlutathioneen
dc.subjectglutathione reductaseen
dc.subjectroot developmenten
dc.subjectauxinen
dc.subjectrice (Oryza sativa L.)en
dc.title水稻穀胱甘肽影響根部發育與生長素極性分布之研究zh_TW
dc.titleStudy the Effect of Glutathione on Rice Root Development and Auxin Polar Distributionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文理,張孟基,陸重安,林雅芬
dc.subject.keyword穀胱甘?,穀胱甘?還原?,根部發育,生長素,水稻,zh_TW
dc.subject.keywordGlutathione,glutathione reductase,root development,auxin,rice (Oryza sativa L.),en
dc.relation.page62
dc.identifier.doi10.6342/NTU201902234
dc.rights.note有償授權
dc.date.accepted2019-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved