Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72630
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 許富鈞(Fu-Chiun Hsu) | |
dc.contributor.author | Shih-Jie Huang | en |
dc.contributor.author | 黃仕杰 | zh_TW |
dc.date.accessioned | 2021-06-17T07:02:17Z | - |
dc.date.available | 2024-08-05 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-31 | |
dc.identifier.citation | 何偉真. 2006. 臺灣冬季生產結球萵苣外銷之探討. 中國園藝 52:277-290.
林煥章. 2009. 結球萵苣產銷概況與輔導措施執行情形, p. 51-54. 刊於:農政與農情. 行政院農業委員會出版. 臺北. 洪穎華. 2014. 減輕結球萵苣切面褐化之處理技術. 國立臺灣大學園藝學研究所碩士論文. 臺北. 徐敏記. 2016. 園產品預冷處理與冷鏈管理介紹. 豐年 66:42-48. 臺北. 徐敏記、謝明憲、黃肇家. 2017. 外銷美生菜的預冷技術與未來趨勢. 豐年 67:82-86. 臺北. 許涵鈞、謝明憲、林棟樑、王三太. 2009. 耐熱結球萵苣引種觀察比較試驗. 臺南區農業改良場研究彙報 55:36-43. 張乃文. 2016. 褐化抑制物對結球萵苣主莖創傷後酚類含量變化之影響. 國立臺灣大學園藝學研究所碩士論文. 臺北. 曹幸之、羅筱鳳. 2008. 結球萵苣, p. 100-104. 刊於:曹幸之、羅筱鳳編著. 蔬菜II. 復文書局. 臺北. 臺灣. 黃博煥. 2017. 食用醋與包裝處理對於抑制結球萵苣主莖切面褐化之影響. 國立臺灣大學園藝學研究所碩士論文. 臺北. 楊婕. 2015. 創傷與抑制褐化處理對結球萵苣主莖切面褐化與對苯丙氨酸氨基裂解酶活性之影響. 國立臺灣大學園藝學研究所碩士論文. 臺北. 蔡正宏、傅立忠. 2018. 臺灣綠金傳奇,MIT生菜站上世界舞台, p. 6-11. 刊於:農政與農情. 行政院農業委員會出版. 臺北. 謝明憲、江汶錦. 2014. 外銷結球萵苣緩釋型肥料應用效率之研究. 臺南區農業改良場研究彙報 64:20-35. 謝明憲、蔡淳瑩、李美慧. 2015. 臺灣外銷結球萵苣產業競爭優勢. 臺南區農業專訊 92:7-11. Ali, H.M., A.M. El-Gizawy, R.E.I. El-Bassiouny, and M.A. Saleh. 2015. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products. J. Food Sci. Technol. 52:3651-3659. Altunkaya, A. and V. Gökmen. 2008. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem. 107:1173-1179. Atkinson, L.D., L.K. McHale, M.J. Truco. H.W. Hilton, J. Lynn, J.W. Schut, R.W. Michelmore, P. Hand, and D.A.C. Pink. 2013. An intra specific linkage map of lettuce (Lactuca sativa) and genetic analysis of postharvest discolouration traits. Theor. Appl. Genet. 126:2737-2752. Baedeker, M. and G.E. Schulz. 2002. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Structure 10:61-67. Barros, M., and M.E. Saltveit. 2013. Microbial growth in fresh‐cut lettuce increases when wound‐induced phenolic accumulation is suppressed. Postharvest Biol. Technol. 83:34-39. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Bustin, S.A., V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M.W. Pfaffl, G.L. Shipley, J. Vandersompele, and C.T. Wittwer. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chem. 55:611-622. Campos-Vargas, R. and M.E. Saltveit. 2002. Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol. Plant. 114:73-84. Campos-Vargas, R., H. Nonogaki, T. Suslow, and M.E. Saltveit. 2004. Isolation and characterization of a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves. Physiol. Plant. 121:429-438. Campos-Vargas, R., H. Nonogaki, T. Suslow, and M.E. Saltveit. 2005. Heat shock treatments delay the increase in wound-induced phenylalanine ammonia-lyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue. Physiol. Plant. 123:82-91. Cantos, E., J.C. Espín, and F.A. Tomás-Barberán. 2001. Effect of wounding on phenolic enzymes in six minimally processed lettuce cultivars upon storage. J. Agr. Food Chem. 49:322-330. Chazarra, S., J. Cabanes, J. Escribano, and F. Garcia-Carmona. 1996. Partial purification and characterization of latent polyphenol oxidase in iceberg lettuce. J. Agr. Food Chem. 44:984-988. Chen, Z., C. Zhu, Y. Zhang, D. Niu, and J. Du. 2010. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biol. Technol. 58:232-238. Chen, X., L. Ren, M. Li, J. Qian, J. Fan, and B. Du. 2017. Effects of clove essential oil and eugenol on quality and browning control of fresh-cut lettuce. Postharvest Biol. Technol. 214:432-439. Choi, Y.J., F.A. Tomás-Barberán, and M.E. Saltveit. 2005. Wound-induced browning in lettuce (Lactuca sativa L.) leaf tissue in reduced by exposure to n-alcohols. Postharvest Biol. Technol. 37:47-55. Cochrane, F.C., L.B. Davin, and N.G. Lewis. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557-1564. Decoteau, D.R. 2007. Leafy salad crops-Lettuce, p. 238-252. In: Vegetable Crops. Pearson Education Taiwan Ltd., Taipei, Taiwan. Degl’Innocenti, E., L. Guidi, A. Paradossi, and F. Tognoni. 2005. Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. Acephala). J. Agr. Food Chem. 53:9980-9984. Deng, J., Y. Bi, Z. Zhang, D. Xie, Y. Ge, W. Li, J. Wang, and Y. Wang. 2015. Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 103:53-61. Dixon, R.A., L. Achnine, P. Kota, C.J. Liu, M.S. Reddy, and L. Wang. 2002. The phenylpropanoid pathway and plant defense: a genomics perspective. Mol. Plant Pathol. 3:371-390. Fujita, N., R. Tanaka, and M. Murata. 2006. Cinnamaldehyde inhibits phenylalanine ammonia-lyase and enzymatic browning of cut lettuce. Biosci. Biotechnol. Biochem. 70:672-676. García, C.J., R. Garcia-Villalba, M.I. Gil, and F.A. Tomás-Barberán. 2017. LC-MS untargeted metabolomics to explain the signal metabolites inducing browning in fresh-cut lettuce. J. Agri. Food Chem. 65:4526-4535. Guo, Z., H. Liua, X. Chen, L. Huang, J. Fan, J. Zhou, X. Chang, B. Dua, and X. Chang. 2019. Modified-atmosphere packaging maintains the quality of postharvest whole lettuce (Lactuca sativa L. Grand Rapid) by mediating the dynamic equilibrium of the electron transport chain and protecting mitochondrial structure and function. Postharvest Biol. Technol. 147:206-213. Hanson, K.R., and E.A. Havir. 1970. L-phenylalanine ammonia-lyase. IV. Evidence that the prosthetic group contains dehydroalanyl residue and mechanism of action. Arch. Biochem. Biophys. 141:1-17. Havir, E.A. 1971. L-phenylalanine ammonia-lyase (maize): evidence for a common catalytic site for L-phenylalanine and L-tyrosine. Plant Physiol. 48:130-136. Hayashi, E., N. Aoyama, and D.W. Still. 2008. Quantitative trait loci asso¬ciated with lettuce seed germination under different temperature and light environments. Genome 51:928-947. Herrmann, K.M. and L.M. Weaver. 1999. The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:473-503. Hisaminato, H., M. Murata, and S. Homma. 2001. Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Biosci. Biotechnol. Biochem. 65:1016-1021. Huang, H., Q.Q. Zhu, Z.K. Zhang, B. Yang, X.W. Duan, and Y.M. Jiang. 2013. Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. ‘Brazil’) fruit during storage. Scientia Hort. 160:208-212. Jiang, Y.M., L.T. Pen, and J.R. Li. 2004. Use of citric acid for shelf life and quality maintenance of fresh-cut Chinese water chestnut. J. Food Eng. 63:325-328. Kang, H. and M.E. Saltveit. 2003. Wound-induced PAL activity is suppressed by heat-shock treatments that induce the synthesis of heat-shock proteins. Physiol. Plant. 119:450-455. Ke, D. and M.E. Saltveit. 1989. Wound-induced ethylene production, phenolic metabolism and susceptibility to russet spotting in iceberg lettuce. Physiol. Plant. 76:412-418. Koopman, W.J.M. and J.H. De Jong. 1996. A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subsect. Lactuca, Compositae). Acta Bot. Neerlandica 45:211-222. Koukol, J. and E.E. Conn. 1961. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236:2692-2698. Křístková, E., I. Doležalová, A. Lebeda, V. Vinter, and A. Novotná. 2008. Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Hort. Sci. (Prague) 35:113-129. Langer, B., M. Langer, and J. Retey. 2001. Methylidene-imidazolone (MIO) from histidine and phenylalanine ammonia-lyase. Adv. Protein Chem. 58:175-214. Lee, M.J., J.E. Son, and M.M. Oh. 2014. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J. Sci. Food Agr. 94:197-204. Li, T., Q. Wu, Y. Zhou, Z. Yun, X. Duan, and Y. Jiang. 2018. L-Cysteine hydrochloride delays senescence of harvested longan fruit in relation to modification of redox status. Postharvest Biol. Technol. 143:35-42. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. López-Gálvez, G., M.E. Saltveit, and M. Cantwell. 1996. The visual quality of minimally processed lettuces stored in air or controlled atmosphere with emphasis on romaine and iceberg types. Postharvest Biol. Technol. 8:179-190. Luna, M.C., J.A. Tudela, F.A. Tomás-Barberán, and M.I. Gil. 2016. Modified atmosphere (MA) prevents browning of fresh-cut romaine lettuce through multi-target effects related to phenolic metabolism. Postharvest Biol. Technol. 119:84-93. Luo, Y.G., S.M. Lu, B. Zhou, and H. Feng. 2011. Dual effectiveness of sodium chlorite for enzymatic browning inhibition and microbial inactivation on fresh-cut apples. LWT Food Sci. Technol. 44:1621-1625. MacDonald, M.J., and G.B. D’Cunha. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85:273-282. Martinez, M.V. and J.R. Whitaker. 1995. The biochemistry and control of enzymatic browning. Trends Food Sci. Technol. 6:195-200. Mayer, A.M. and E. Harel. 1979. Polyphenol oxidases in plants. Phytochemistry 18:193-215. McHale, L.K., M.J. Truco, A. Kozik, T. Wroblewski, O.E. Ochoa, K.A. Lahre, S.J. Knapp, and R.W. Michelmore. 2009. The genomic archi¬tecture of disease resistance in lettuce. Theor. Appl. Genet. 118:565-580. Michaelson, M.J., H.J. Price, J.R. Ellison, and J.S. Johnston. 1991. Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry. Amer. J. Bot. 78:183-188. Mohammadi, M. and H. Kazemi. 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162:491-498. Moreira, M.D.R., A.G. Ponce, C.E. Del Valle, and S.I. Roura. 2006. Ascorbic acid retention, microbial growth, and sensory acceptability of lettuce leaves subjected to mild heat shocks. J. Food Sci. 71:188-192. Morris, L.L., A.A. Kader, J.A. Klaustermeyer, and C. Cheyney. 1978. Avoiding ethylene concentrations in harvested lettuce. California Agr. 32:14-15. Nuez, F. and J. Prohens. 2008. Vegetables. Springer. Pang, X.Q. and Z.Q. Zhang, 2002. The effects of anti-browning treatments on the minimally processed potato and water chestnut during low temperature storage. Food Sci. 23:126-129. Petersen, M., J. Hans, and U. Matern. 2010. Biosynthesis of phenylpropanoids and related compounds. Annu. Plant Rev. 40:182-257. Poppe, L. 2001. Methylidene-imidazolone: a novel electrophile for substrate activation. Current Opinion Chem. Biol. 5:512-524. Preczenhak, A.P., B. Orsi, G.P.P. Lima, J.V. Tezotto-Uliana, I.O. Minatel, and R.A. Kluge. 2019. Cysteine enhances the content of betalains and polyphenols in fresh-cut red beet. Food Chem. 286:600-607. Ra Dixon, N.P. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097. Reyes-Chin-Wo, S., Z. Wang, X. Yang, A. Kozik, S. Arikit, C. Song, L. Xia, L. Froenicke, D.O. Lavelle, M. Truco, R. Xia, S. Zhu, C. Xu, H. Xu, X. Xu, K. Cox, I. Korf, B.C. Meyers, and R.W. Michelmore. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Commun. 8:14953. Richards, E., M. Reichardt, and S. Rogers. 1994. Preparation of genomic DNA from plant tissue. Current protocols Mol. Biol. 27:2.3.1-2.3.7. Richard-Forget, F.C., P.M. Goupy, and J.J. Nicolas. 1992. Cysteine as an inhibitor of enzymatic browning. 2. kinetic studies. J. Agr. Food Chem. 40:2108-2113. Ripoll, J., F. Charles, V. Vidal, S. Laurent, C. Klopp, F. Lauri, H. Sallanon, and D. Roux. 2019. Transcriptomic view of detached lettuce leaves during storage: A crosstalk between wounding, dehydration and senescence. Postharvest Biol. Technol. 152:73-88. Ritenour, M.A. and M.E. Saltveit. 1996. Identification of a phenylalanine ammonia-lyase inactivating factor in harvested iceberg lettuce (Lactuca sativa L.). Physiol. Plant. 97:327-331. Ritter, H. and G.E. Schulz. 2004. Structural basis for the entrance into the phenylpropanoid metabolism catalysed by phenylalanine ammonia-lyase. Plant Cell 16:3426-3436. Saltveit, M.E. 2000. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol. Technol. 21:61-69. Saltveit, M.E. 2004. Effect of 1-methylcyclopropene on phenylpropanoid metabolism, the accumulation of phenolic compounds, and browning of whole and fresh-cut ‘iceberg’ lettuce. Postharvest Biol. Technol. 34:75-80. Saltveit, M.E. 2018. Anaerobic exposure before or after wounding reduces the production of wound-induced phenolic compounds in fresh-cut lettuce. Postharvest Biol. Technol. 135:77-82. Saltveit, M.E., Y.J. Choi, and F.A. Tomás-Barberán. 2005. Involvement of components of the phospholipid signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca sativa L.) leaf tissue. Physiol. Plant. 125:345-355. Sedaghat, N. and Y. Zahedi. 2012. Application of edible coating and acidic washing for extending the storage life of mushrooms (Agaricus bisporus). Food Sci. Technol. Intl. 18:523-530. Shiffler, R. 1988. Maximum Z scores and outliers. Amer. Stat. 42:79-80. Sommer, A., E. Ne´eman, J.C. Steffens, A.M. Mayer, and E. Harel. 1994. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol. 105:1301-1311. Song, M., S. Wu, L. Shuai, Z. Duan, Z. Chen, F. Shang, and F. Fang. 2019. Effects of exogenous ascorbic acid and ferulic acid on the yellowing of fresh-cut Chinese water chestnut. Postharvest Biol. Technol.148:15-21. Tanaka, E., S. Okumura, R. Takamiya, H. Hosaka, Y. Shimamura, and M. Murata. 2011. Cinnamaldehyde inhibits enzymatic browning of cut lettuce by repressing the induction of phenylalanine ammonia-lyase without promotion of microbial growth. J. Agr. Food Chem. 59:6705-6709. Tomás-Barberán, F.A., M.I. Gil, M. Castañer, F. Artés, and M.E. Saltveit. 1997. Effect of selected browning inhibitors on phenolic metabolism in stem tissue of harvested lettuce. J. Agr. Food Chem. 45:583-589. Toivonen, P.M.A. 2004. Postharvest storage procedures and oxidative stress. HortScience 39:938-942. Toivonen, P.M.A. and D.A. Brummell. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 48:1-14. Truco, M.J., R. Antonise, D. Lavelle, O. Ochoa, A. Kozik, H. Witsenboer, S.B. Fort, M.J.W. Jeuken, R.V. Kesseli, P. Lindhout, R.W. Michelmore, and J. Peleman 2007. A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor. Appl. Genet. 115:735-746. Truco, M.J., H. Ashrafi, A. Kozik, H. Van Leeuwen, J. Bowers, S. Reyes-Chin-Wo, K. Stoffel, H. Xu, T. Hill, A. Van Deynze, and R.W. Michelmore. 2013. An ultra high-density, transcript-based, genetic map of lettuce. Genes Genomes Genet. doi:10.1534/g3.112.004929. Tsai, C.J., S.A. Harding, T.J. Tschaplinski, R.L. Lindroth, and Y. Yuan. 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist. 172:47-62. Tudela, J.A., N. Hernández, A. Perez-Vicente, and M.I. Gil. 2016. Comprehensive evaluation of different storage conditions for the varietal screening of lettuce for fresh-cut performance. Postharvest Biol. Technol. 120:36-44. Wanner, L.A., G. Li, D. Ware, I.E. Somssich, and K.R. Davis. 1995. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol. Biol. 27:327-338. Watanabe, S.K., G. H. Velazco, F. I. Chiñas, and A. L. Munguia. 1992. Phenylalanine ammonia lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: Application for phenylalanine and tyrosine deamination. World J. Microbiol. Biotechnol. 8:406-410. Wu, Z., S. Gui, S. Wang, and Y. Ding. 2014. Molecular evolution and functional characterization of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms. BMC Evolutionary Biol. 14:13680-13690. Wu, Y., W. Wang, Y. Li, X. Dai, G. Ma, D. Xing, M. Zhu, L. Gao, and T. Xia. 2017. Six phenylalanine ammonia-lyases from Camellia sinensis: Evolution, expression, and kinetics. Plant Physiol. Biochem. 118:413-421. Yan, S., T. Yang, and Y. Luo. 2015. The mechanism of ethanol treatment on inhibiting lettuce enzymatic browning and microbial growth. LWT Food Sci. Technol. 63:383-390. Yingsanga, P., V. Srilaong, S. Kanlayanarat, S. Nochinda, and W.B. McGlasson. 2008. Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and See-Chompoo. Postharvest Biol. Technol. 50:164-168. Zheng, X., L. Ye, T. Jiang, G. Jing, and J. Li. 2012. Limiting the deterioration of mango fruit during storage at room temperature by oxalate treatment. Food Chem. 130:279-285. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72630 | - |
dc.description.abstract | 結球萵苣為菊科萵苣屬一年生草本植物,為臺灣重要之外銷作物。結球萵苣於採收後其傷口處會逐漸轉變為紅褐色,此情形會降低商品之外觀價值,並使消費者之購買意願下降。褐變之生成與酚類物質受到多酚氧化酶(polyphenol oxidase, PPO)催化,進而導致氧化相關。目前已知創傷會誘導結球萵苣主莖切片苯丙胺酸氨基裂解酶(phenylalanine ammonia lyase, PAL)活性提升,使酚類物質含量上升,此現象被視為結球萵苣主莖褐變之關鍵控制點,本研究欲從基因層次探討PAL同源基因表現量與萵苣切面褐變之關係。
利用萵苣公開之基因體資料庫,共找出六條具有PAL酵素基因註解(gene annotation)之序列,以專一性之引子進行全長PCR放大,成功以gDNA擴增出Lsa002790.1與Lsa019010.1;以cDNA放大出Lsa005270.1、Lsa027790.1、Lsa019025.1之全長片段。並以其與已發表之LsPAL1間的相似程度,將其依序命名為LsPAL1至LsPAL5,其中LsPAL5具兩個不同起始子之亞型。半定量PCR結果顯示創傷後2小時內LsPAL1、LsPAL2、LsPAL3、LsPAL4表現量皆受創傷誘導上升,於創傷後8小時前後具有最高之表現量。然而,LsPAL5於創傷前後基因皆未有表現。推測LsPAL基因家族中LsPAL1、LsPAL2、LsPAL3、LsPAL4與萵苣切面褐變具有關聯性,而LsPAL5則與褐變產生無直接關係。 由前人研究得知數種可抑制結球萵苣切面褐化之藥劑處理,本研究將結合此些藥劑處理,藉其對於抑制褐變之效果,判斷各褐變抑制劑於酵素型褐變中所扮演之角色,並藉此瞭解LsPAL各同源基因與主莖切面褐變之關係。浸泡3%醋酸5秒鐘可使主莖切片維持原色澤至處理後10天;3%正丁醇處理5分鐘雖能延後褐變上升之時間點,但於處理後10天仍出現褐變現象;而半胱胺酸鹽酸鹽(L-cysteine hydrochloride, CysH)處理5分鐘亦能抑制褐變發生,唯處理後10天部分樣本顏色轉為黃綠色。酵素活性部分,醋酸能有效抑制PAL活性於處理後72小時內不上升;正丁醇和CysH處理則分別延緩PAL活性至處理後72小時與處理後48小時才上升。此外,醋酸與正丁醇處理皆使PPO活性上升,CysH處理則使PPO活性於處理後2天內萵苣主莖切片PPO活性皆趨近於0 U·μg-1protein,至處理後72小時才可測得PPO活性。LsPALs基因表現部分,醋酸與正丁醇皆能抑制LsPALs基因表現,其中又以醋酸的抑制效果為佳,而CysH則可延後LsPALs基因表現至處理後48小時上升。 上述結果顯示由於醋酸能同時抑制PAL蛋白質之生合成與其活性,故擁有最佳之褐變抑制效果。CysH處理亦可延後PAL之基因表現與活性上升,並完全抑制PPO之酵素活性,故亦有良好之褐變抑制效果。而正丁醇僅能抑制LsPALs基因表現,於長時間儲藏條件下PAL活性仍有上升之現象,使得正丁醇處理之褐變抑制效果較差。 醋酸雖然具有最佳之褐變抑制效果,然而部分樣本在醋酸處理後12天出現微生物孳生之狀況。因此,將其結合具有抑菌效果之酒精處理進行測試。結果顯示先施用酒精再立即進行醋酸處理與兩處理合併使用,此兩種方式皆能有效抑制褐變,抑制褐變效果皆與僅施用醋酸相似,而單獨施用酒精處理抑制褐變效果較差。施用合併處理進行生菌之觀察,處理後14天仍未出現微生物生長,且於處理後14天生菌數皆低於單獨施用醋酸處理。因此判斷醋酸及酒精合併處理可以減緩微生物生長現象,故可利用此處理來解決減緩結球萵苣底部褐化的問題,延長其櫥架壽命。 | zh_TW |
dc.description.abstract | Iceberg lettuce (Lactuca sativa L. var. capitata) is an annual plant in Compositae family. Nowadays iceberg lettuce becomes an important crop for export in Taiwan. However, the cut surface of iceberg lettuce would turn red brown after harvest. It may cause the quality loss and shorten the shelf life. The browning resulted from oxidation of polyphenol contents which was catalyzed by polyphenol oxidase (PPO). Besides, it was known that wounding would induce the phenylalanine ammonia lyase (PAL) activity of lettuce stem disks and cause the phenolics contents increasing. Therefore, the induction of PAL activity was considered to be the key point of lettuce browning. Therefore, the objective of this research was to elucidate the relationship between PAL homologs and lettuce butt discoloration in transcript level.
With the latest genome database of lettuce, Lettuce Genome Resource (LGR), we screened out six sequences with PAL annotation. Then using specific primers to do full-length PCR, we successfully identified Lsa027790.1 and Lsa019010.1 with gDNA template; amplified Lsa005270.1, Lsa027790.1, and Lsa019025.1 with cDNA template. Besides, according to the similarity to published LsPAL1 to give them the names from LsPAL1 to LsPAL5 and LsPAL5 has two isoforms. Then, use semi quantitative PCR to examine the expression patterns and the results suggested that LsPAL1 to LsPAL4 were induced in 2 hrs after wounding and reached the peak in 8 hrs after wounding. LsPAL5 showed no expression before and after wounding yet. Consequently, we could know that LsPALs might play an important role in butt discoloration except for LsPAL5. There are several browning inhibitors which are effective on inhbiting butt discoloration shown in previous study. Then we applied these browning inhibitors on the cut surface to characterize the role each member of LsPAL gene family played. Besides, we also revealed the inhibition mechanism of each inhibitor and what kind of treatment was proper on butt discoloration. After soaked in 3% acetic acid for 5 seconds after wounding, stem disks maintained original color to 10 days. Three percent of 1-butanol treatment delayed the lettuce browning happened but the stem disks still turned brown in 10 days after treatment. Three percent of L-cysteine hydrochloride (CysH) treatment also inhibited browning but the stem disks would turn yellow in 10 days after treatment. In addition, acetic acid effectively inhibited PAL activity in 72 hours after treatment. Similarly, 1-butanol and CysH treatments delayed the inducition of PAL activity. Besides, acetic acid and 1-butanol treatment increased the PPO activity; whereas, CysH totally inhibited the PPO activity in 48 hours after treatment. In transcript level, both acetic acid and 1-butanol treatment repressed the LsPALs gene expression and CysH treatment delayed the induction of LsPALs to 48 hours after treatments. To sum up, due to the repression on PAL synthesis and activity, acetic acid treatment was thought to be the most effective approach to inhibit enzymatic browning on lettuce stem disks among these three antibrowning agents. CysH treatment not only delayed the induction of PAL gene expression and activity but also inhibited the PPO activity, and thus had a good atibrowning effect. Treating 1-butanol only inhibited LsPALs gene expression while PAL activity in lettuce stem disks still increased. It resulted in 1-butanol treatment having less antibrowning effect on lettuce stem disks after storage for long time. Although acetic acid treatment could totally inhibit the browning, it would cause severe microbial growth on lettuce stem disks in 12 days after acetic acid treatment. Therefore, we combined ethanol treatment and acetic treatment to test whether this combination treatment could repress browning and reduce microbial growth simultaneously. The results showed that both of applying ehanol first then using acetic acid treatment and combining this two chemicals at the same time could effectively retard browning. The antibrowning effect of combination treatment is better than ethanol treatment. Besides, there is no visible microbial growth for 2 weeks after applying combination treatment. Additionally, the microbial counts on combination treatment treated lettuce stems were still lower than those of the acetic treatment. These results showed that combination of acetic acid and ethanol treatment had high potential to be applied to solve the butt discoloration problem and extend the shelf life. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:17Z (GMT). No. of bitstreams: 1 ntu-108-R06628112-1.pdf: 3675597 bytes, checksum: 57a7bedf488809f4f1e55b7021a24318 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 x 前言 1 第一章 前人研究 2 第一節 萵苣簡介 2 第二節 臺灣結球萵苣產業概況 3 第三節 結球萵苣切面褐化發生機制 5 (一) 酚類化合物之生合成 6 (二) 苯丙胺酸氨基裂解酶 6 (三) 多酚氧化酶 7 第四節 延緩萵苣褐變之處理技術 8 (一) 物理性採後處理技術 9 (二) 化學性採後處理技術 10 (三) 其他處理方式 11 第二章 材料與方法 12 第一節 植物材料與處理 12 (一) 植物材料與主莖切片方式 12 (二) 藥劑處理方式 12 (三) 萵苣主莖切片外觀調查 12 第二節 結球萵苣LsPAL基因家族序列取得與驗證 13 (一) 去氧核醣核酸萃取 (DNA isolation) 13 (二) 核糖核酸萃取 (RNA extraction) 14 (三) 去氧核醣核酸酶(DNase)處理 14 (四) 反轉錄(reverse transcription) 14 (五) 基因全長聚合酶連鎖反應(polymerase chain reaction, PCR) 15 (六) DNA膠體電泳(gel electrophoresis)分析 15 第三節 親緣關係樹(phylogenetic tree)建立 16 (一) 胺基酸多重序列比對(multiple sequence alignment) 16 (二) 親緣關係樹建立 16 第四節 結球萵苣LsPAL基因家族基因表現 16 (一) 半定量PCR 16 (二) 即時定量聚合酶連鎖反應(Real-time quantitative polymerase chain reaction, qPCR) 16 第五節 PAL與PPO活性測定 17 (一) 藥品製備 17 (二) PAL與PPO酵素萃取 18 (三) PAL與PPO活性測定 18 (四) 酵素粗萃取液總蛋白質含量定量 18 第六節 結球萵苣主莖切片總生菌數測定 19 第七節 數據作圖與統計分析 19 第三章 結果 20 第一節 創傷與結球萵苣主莖切面酵素型褐變之關聯 20 第二節 結球萵苣LsPAL基因家族序列取得與驗證 20 第三節 LsPALs 基因序列分析 21 第四節 LsPALs於結球萵苣主莖切面褐變下之基因表現 21 第五節 褐變抑制處理對結球萵苣主莖切面褐變之影響 22 第六節 褐變抑制處理對結球萵苣主莖切片PAL與PPO活性之影響 23 第七節 褐變抑制處理對LsPALs基因表現之影響 24 第八節 醋酸與酒精複合處理對結球萵苣主莖切面褐變之影響 25 第四章 討論 27 第一節 PAL為結球萵苣主莖切面褐變之關鍵控制點 27 第二節 LsPAL基因家族與結球萵苣主莖切面褐化具直接關聯性 27 第三節 抑制褐變處理對LsPAL基因家族與結球萵苣主莖切面褐變之影響 29 (一) 醋酸處理與主莖切面褐變之關係 29 (二) 正丁醇處理與主莖切面褐變之關係 30 (三) 半胱胺酸鹽酸鹽處理與主莖切面褐變之關係 31 第四節 酒精與醋酸複合處理與結球萵苣主莖切面生菌數之關係 32 第五章 結論 34 結果圖表 35 參考文獻 61 | |
dc.language.iso | zh-TW | |
dc.title | 結球萵苣主莖切面褐化與苯丙胺酸氨基裂解酶同源基因表現之關係 | zh_TW |
dc.title | The Relationship between Expression of Phenylalanine Ammonia Lyase Homologs and Butt Discoloration in Iceberg Lettuce | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王自存(Tsu-Tsuen Wang),林淑怡(Shu-I Lin) | |
dc.subject.keyword | 醋酸,正丁醇,半胱胺酸,萵苣基因體資料庫,酵素型褐變, | zh_TW |
dc.subject.keyword | acetic acid,1-butanol,L-cysteine,Lettuce Genome Resource,enzymatic browning, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201901583 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-31 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
Appears in Collections: | 園藝暨景觀學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 3.59 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.