Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72626
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾琬瑜(Wan-Yu Tseng)
dc.contributor.authorYi-Chien Chenen
dc.contributor.author陳宜謙zh_TW
dc.date.accessioned2021-06-17T07:02:13Z-
dc.date.available2022-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citationNiklaus P. Lang, J.L., Clinical Periodontology and Implant Dentistry 6th edition. 2015.
McCracken, M., Dental Implant Materials: Commercially Pure Titanium and Titanium Alloys. Journal of Prosthodontics, 1999. 8(1): p. 40-43.
Kim, H. and W.-J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin solid films, 2009. 517(8): p. 2563-2580.
Kim, H., et al., The biocompatibility of SLA-treated titanium implants. Biomed. Mater, 2008. 3(025011): p. 025011.
Gaggl, A., et al., Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials, 2000. 21(10): p. 1067-1073.
Mendonça, G., et al., Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials, 2008. 29(28): p. 3822-3835.
Kuromoto, N.K., R.A. Simão, and G.A. Soares, Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Materials Characterization, 2007. 58(2): p. 114-121.
P.F.Manicone, P.R.I., L. Raffaelli, M. Paolantonio, G. Rossi, D.Berardi, G. Perfetti, Biological considerations on the use of zirconia for dental device. International Journal of Immunopathology and Pharmacology, 2007. 20(1): p. 9-12.
Att, W., et al., Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials, 2009. 30(7): p. 1273-1280.
Sammons, R.L., et al., Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration: a scanning electron microscopic study. Clinical oral implants research, 2005. 16(6): p. 657-666.
Schneider, G.B., et al., Differentiation of preosteoblasts is affected by implant surface microtopographies. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 69(3): p. 462-468.
Le Guehennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007. 23(7): p. 844-54.
Gaviria, L., et al., Current trends in dental implants. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 2014. 40(2): p. 50-60.
Noort, R.V., Review Titanium: the implant material of today. Journal of Materials Science, 1987. 22: p. 3801-3811
J.E.G. Gonza ́lez, J.C.M.-R., Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 1999. 471: p. 109-115.
Albrektsson, T. and C. Johansson, Osteoinduction, osteoconduction and osseointegration. European spine journal, 2001. 10(2): p. S96-S101.
Albrektsson, T., et al., Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica, 1981. 52(2): p. 155-170.
Po-Chun Chang, N.P.L., William V. Giannobile, Review: Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clinical Oral Implants Research, 2009. 21: p. 1-12.
Bosshardt, D.D., V. Chappuis, and D. Buser, Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontology 2000, 2017. 73(1): p. 22-40.
Mavrogenis, A.F., et al., Biology of implant osseointegration. J Musculoskelet Neuronal Interact, 2009. 9(2): p. 61-71.
Shalabi, M., et al., Implant surface roughness and bone healing: a systematic review. Journal of dental research, 2006. 85(6): p. 496-500.
Buser, D., et al., Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of biomedical materials research, 1991. 25(7): p. 889-902.
Albrektsson, T. and A. Wennerberg, The impact of oral implants-past and future, 1966-2042. J Can Dent Assoc, 2005. 71(5): p. 327.
Wennerberg, A., et al., A histomorghometric study of screw‐shaped and removal torque titanium implants with three different surface topographies. Clinical oral implants research, 1995. 6(1): p. 24-30.
Cochran, D., et al., Bone response to unloaded and loaded titanium implants with a sandblasted and acid‐etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998. 40(1): p. 1-11.
Vanden Bogaerde, L., et al., Early function of splinted implants in maxillas and posterior mandibles using Brånemark System® machined‐surface implants: an 18‐month prospective clinical multicenter study. Clinical implant dentistry and related research, 2003. 5: p. 21-28.
Chappuis, V., et al., Long‐term outcomes of dental implants with a titanium plasma‐sprayed surface: a 20‐year prospective case series study in partially edentulous patients. Clinical implant dentistry and related research, 2013. 15(6): p. 780-790.
Wennerberg, A., et al., Bone Tissue Response to Commercially Pure Titanium Implants Blasted With Fine and Coarse Particles of Aluminum Oxide. Bone, 1996. 11(1): p. 38-45.
Gehrke, S.A., et al., A comparative evaluation between aluminium and titanium dioxide microparticles for blasting the surface titanium dental implants: an experimental study in rabbits. Clinical oral implants research, 2018. 29(7): p. 802-807.
Novaes Jr, A.B., et al., Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. International Journal of Oral & Maxillofacial Implants, 2002. 17(3).
Park, J.Y. and J.E. Davies, Red blood cell and platelet interactions with titanium implant surfaces. Clinical oral implants research, 2000. 11(6): p. 530-539.
Szmukler‐Moncler, S., et al., Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 68(2): p. 149-159.
Van Velzen, F.J., et al., 10‐year survival rate and the incidence of peri‐implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clinical oral implants research, 2015. 26(10): p. 1121-1128.
Zinelis, S., et al., Surface characterization of SLActive® dental implant. European Journal of Esthetic Dentistry, 2012. 7(1).
Philipp, A., et al., Comparison of SLA® or SLA ctive® implants placed in the maxillary sinus with or without synthetic bone graft materials–an animal study in sheep. Clinical oral implants research, 2014. 25(10): p. 1142-1148.
S.Anil, P.S.A., H. Alghamdi, J.A. Jansen, Dental Implant Surface Enhancement and Osseointegration. Implant Dentistry- A Rapidly Evolving Practice, 2011.
Cooper, L.F., A role for surface topography in creating and maintaining bone at titanium endosseous implants. The Journal of prosthetic dentistry, 2000. 84(5): p. 522-534.
Rimondini, L., et al., The effect of surface roughness on early in vivo plaque colonization on titanium. Journal of periodontology, 1997. 68(6): p. 556-562.
Smeets, R., et al., Impact of dental implant surface modifications on osseointegration. BioMed Research International, 2016. 2016.
George, S.M., Atomic layer deposition: an overview. Chemical reviews, 2009. 110(1): p. 111-131.
Michael Hisbergues, S.V., Philippe Vendeville, Review Zirconia: Established Facts and Perspectives for a Biomaterial in Dental Implantology. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009: p. 519-529.
Helmer J.D., T.D.D., Research on bioceramics. Symp. on Use of Ceramics as Surgical Implants. South Carolina. Clemson University, 1969.
PS, C., Zirconia: The seconde generation of ceramics for total hip replacement. Bull Hosp Jt Dis Orthop Inst, 1989. 49: p. 170-177.
Degidi, M., et al., Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J Periodontol, 2006. 77(1): p. 73-80.
Zeynep O ̈ zkurt, E.K.l., Zirconia Dental Implants: A Literature Review, 2011. 37(3): p. 367-376.
Cranin, A.N., et al., Alumina and zirconia coated vitallium oral endosteal implants in beagles. Journal of biomedical materials research, 1975. 9(4): p. 257-262.
Bacchelli, B., et al., Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep. Acta Biomaterialia, 2009. 6(5): p. 2246-2257.
Sollazzo, V., et al., Zirconium oxide coating improves implant osseointegration in vivo. Dental materials: official publication of the Academy of Dental Materials, 2008. 24(3): p. 357-361.
Toni, A., et al., Bone demineralization induced by cementless alumina-coated femoral stems. Journal of Arthroplasty, 1994. 9(4): p. 435-444.
Nimb, L., J.S. Jensen, and K. Gotfredsen, Interface mechanics and histomorphometric analysis of hydroxyapatite‐coated and porous glass‐ceramic implants in canine bone. Journal of biomedical materials research, 1995. 29(12): p. 1477-1482.
William Lau, K.-H., A. Yoo, and S.P. Wang, Aluminum stimulates the proliferation and differentiation of osteoblasts in vitro by a mechanism that is different from fluoride. Molecular and Cellular Biochemistry, 1991. 105(2): p. 93-105.
Adriano Piattelli, M.D., Michele Paolantonio, Carlo Mangano, Antonio Scarano, Residual aluminum oxide on the surface of titanium implanats has no effect on osseointegration. Biomateriails, 2003. 24: p. 4081-4089.
Risteli, L. and J. Risteli, Biochemical markers of bone metabolism. Annals of medicine, 1993. 25(4): p. 385-393.
Masters, J.R., Human cancer cell lines: fact and fantasy. Nature reviews Molecular cell biology, 2000. 1(3): p. 233.
Mozumder, M.S., J. Zhu, and H. Perinpanayagam, TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation. Biomedical Materials, 2011. 6(3): p. 035009.
Masaki, C., et al., Effects of implant surface microtopography on osteoblast gene expression. Clinical oral implants research, 2005. 16(6): p. 650-656.
Puurunen, R.L., et al., Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy. Journal of applied physics, 2004. 96(9): p. 4878-4889.
Szmukler‐Moncler, S., T. Testori, and J. Bernard, Etched implants: a comparative surface analysis of four implant systems. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 69(1): p. 46-57.
Pratt, R.M. and W.D. Willis, In vitro screening assay for teratogens using growth inhibition of human embryonic cells. Proceedings of the National Academy of Sciences, 1985. 82(17): p. 5791-5794.
Page, B., M. PAGE, and C. NOEL, A new fluorometric assay for cytotoxicity measurements in-vitro. International journal of oncology, 1993. 3(3): p. 473-476.
Hamid, R., et al., Comparison of alamar blue and MTT assays for high through-put screening. Toxicology in vitro, 2004. 18(5): p. 703-710.
Bauer, S., et al., Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science, 2013. 58(3): p. 261-326.
Gautam, C., et al., Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 2016. 45(48): p. 19194-19215.
Bianchi, M., et al., Surface morphology, tribological properties and in vitro biocompatibility of nanostructured zirconia thin films. Journal of Materials Science: Materials in Medicine, 2016. 27(5): p. 96.
Abbass, M.K., S.A. Ajeel, and H.M. Wadullah. Biocompatibility, Bioactivity and Corrosion Resistance of Stainless Steel 316L Nanocoated with TiO2 and Al2O3 by Atomic Layer Deposition Method. in Journal of Physics: Conference Series. 2018. IOP Publishing.
Zhao, S.f., et al., Effects of magnesium‐substituted nanohydroxyapatite coating on implant osseointegration. Clinical oral implants research, 2013. 24: p. 34-41.
Lee, B.-A., et al., Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy. The journal of advanced prosthodontics, 2014. 6(6): p. 512-520.
Andreiotelli, M., H.J. Wenz, and R.J. Kohal, Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clinical oral implants research, 2009. 20: p. 32-47.
Huang, S. and D.E. Ingber, Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Experimental cell research, 2000. 261(1): p. 91-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72626-
dc.description.abstract牙科植體自1960年代發展至今已趨純熟,透過人工植體與齒槽骨達成骨整合之後再接上贋復物已成為目前牙科處置牙齒缺失的治療方案之一。在過去文獻指出牙科植體的表面處理對於骨整合至關重要。
過去植體表面處理多著重於微米等級的粗糙度,本實驗利用原子沉積技術在商業用純鈦以及鈦六鋁四釩試片上分別鍍上不同厚度(0nm、25nm、50nm、100nm)的氧化鋁及氧化鋯,分別評估各組細胞存活率、骨礦化能力、細胞形態、粗糙度之差異。
細胞存活率部分,氧化鋯鍍膜組存活率較高,但氧化鋁是否鍍膜並無統計差異性;骨礦化能力分成鹼性磷酸酶與骨鈣素兩項實驗做探討,氧化鋯鍍膜對鹼性磷酸酶的分泌有所助益,但氧化鋁鍍膜則否;骨鈣素試驗則因實驗天數之因素,全部組別之數值皆低於無試片控制組;以免疫螢光染色觀察細胞形態,則發現氧化鋯鍍膜之細胞形態較多絲狀突觸,而氧化鋁鍍膜組的細胞形態較寬扁,兩種鍍膜材細胞形態皆呈多角形。材料實驗之結果得到鍍膜厚度越厚,表面粗糙度越大;掃描式電子顯微鏡下觀測到氧化鋯組別隨鍍膜厚度增加,表面的成核顆粒越大越密集,但氧化鋁鍍膜組的試片表面成核顆粒就不似氧化鋯鍍膜組般顯著。
由本實驗結果可知,原子沉積技術能穩定地控制鍍膜厚度,增加植體表面奈米等級之粗糙度,並且鍍膜厚度,表面粗糙度越高。此外,氧化鋯鍍膜有助於提升鈦金屬之生物相容性及鹼性磷酸酶之活性,氧化鋁鍍膜則是生物相容性與鈦金屬相當,但對鹼性磷酸酶之活性則與未鍍膜組無統計差異性。
zh_TW
dc.description.abstractDental implant has become popular treatment option in modern dentistry. Osseointegration is one of the key factors that influence the treatment outcome of implantation. Moreover, the surface treatment of implant plays an important role in osseointegration.
The research modified the implant surface by using atomic layer deposition for coating ZrO2 and Al2O3 with different thickness (0nm, 25nm, 50nm, 100nm) on commercially pure titanium and Ti6Al4V discs respectively. Surface roughness and 3D image was measured and calculated by atomic force microscope. Surface morphology was investigated by scanning electron microscope. The cell viability test was evaluated using alamar blue assay and cell morphology was detected by immunofluorescence assay. Alkaline phosphatase assay and osteocalcin were used as early and late biochemical markers for evaluating osteoblast bone mineralization respectively.
The results showed the surface roughness of ZrO2 and Al2O3 coatings were both in nanoscale topography. Furthermore, the thicker coatings resulted in higher surface roughness. Scanning electron microscope analysis revealed characteristic differences between different coating materials. The crystals on the ZrO2 coatings were more evident than Al2O3 coatings.
ZrO2 coatings demonstrated better results in alamar blue assay and alkaline phosphate activity than non-coating samples whereas there were no significant differences between Al2O3 coatings and non-coating samples. HEPM cell morphology was also influenced by the surface treatment. The morphology on ZrO2 coatings presented more filament structures whereas Al2O3 coatings seems more flattened. As for the osteocalcin assay, the result of each group was lower than control group due to the experiment period was not long enough.
To conclude, with atomic layer deposition technique, the implant surface roughness could control in nanoscale. Moreover, ZrO2 coatings showed better cell viability and alkaline phosphatase assay result than non-coating samples. Therefore, ZrO2 could be an appropriate coating material for improve osseointegration.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:02:13Z (GMT). No. of bitstreams: 1
ntu-108-R05422001-1.pdf: 6618704 bytes, checksum: 3af433723e6530fbd1f5c99bee74e382 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 ix
圖表目錄 xiii
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 ix
圖表目錄 xiii
Chapter 1 文獻回顧 1
1.1 牙科植體之現況 1
1.2 牙科植體之演進 1
1.3 鈦金屬 1
1.3.1 抗腐蝕性(Corrosion resistance) 2
1.4 骨整合(Osseointegration) 2
1.4.1 過程 3
1.4.2 促進骨整合的因子[20] 4
1.4.3 抑制骨整合的因子[20] 4
1.5 植體表面粗糙度 5
1.6 植體表面處理 6
1.6.1 機械處理Turned Surface (machined surface) 6
1.6.2 鈦電漿噴覆植體表面(Titanium plasma-spraying, TPS) 7
1.6.3 噴砂處理(Grit blasting) 7
1.6.4 酸蝕處理(Acid etching) 8
1.6.5 噴砂酸蝕處理(Sandblasted and acid-etched, SLA) 8
1.6.6 陽極氧化處理(Anodic oxidation) 11
1.6.7 雷射處理(Laser deposition) 12
1.7 目前市面常用植體表面處理方式之比較 13
1.8 原子沈積技術 (Atomic layer deposition) 14
1.9 氧化鋯Zirconium oxide 16
1.9.1 氧化鋯的生物相容性 16
1.9.2 氧化鋯在牙科植體上的運用 17
1.10 氧化鋁 18
1.10.1 氧化鋁在牙科植贋復體上的運用 18
1.11 骨生成之階段與細胞反應 18
Chapter 2 研究動機與目的 20
2.1 研究動機 20
2.2 研究目的 20
Chapter 3 實驗材料及方法 21
3.1 各項名詞縮寫 21
3.2 實驗流程圖 21
3.3 實驗材料製備 22
3.4 實驗細胞及培養環境 22
3.5 掃描式電子顯微鏡 23
3.5.1 實驗步驟 23
3.6 原子力顯微鏡 23
3.6.1 說明 23
3.6.2 實驗步驟 23
3.7 Alamar blue assay 24
3.7.1 說明 24
3.7.2 實驗步驟 24
3.8 鹼性磷酸酶 (ALP assay) 25
3.8.1 說明 25
3.8.2 實驗步驟 25
3.9 骨鈣素試驗(Osteocalcin assay) 27
3.9.1 說明 27
3.9.2 實驗步驟 27
3.10 免疫螢光染色(Immunofluorescence assay, IFA) 28
3.10.1 說明 28
3.10.2 實驗步驟 28
3.11 統計分析 29
Chapter 4 實驗結果 30
4.1 掃描式電子顯微鏡 (SEM) 30
4.1.1 二氧化鋯鍍膜 30
4.1.2 氧化鋁鍍膜 31
4.2 原子力顯微鏡 33
4.2.1 表面粗糙度 33
4.2.2 3D表面粗糙度分佈圖 35
4.3 Alamar blue assay 39
4.3.1 二氧化鋯鍍膜 39
4.3.2 氧化鋁鍍膜 42
4.4 鹼性磷酸酶試驗(ALP assay) 46
4.4.1 二氧化鋯鍍膜 46
4.4.2 氧化鋁鍍膜 49
4.5 骨鈣素試驗(Osteocalcin assay) 51
4.5.1 二氧化鋯鍍膜 51
4.5.2 氧化鋁鍍膜 54
4.6 免疫螢光染色試為鍍膜驗(Immunofluorescence assay, IFA) 57
4.6.1 氧化鋯鍍膜 57
4.6.2 氧化鋁鍍膜 57
Chapter 5 討論 68
5.1 材料測試 68
5.2 細胞實驗 71
5.2.1 生物相容性 71
5.2.2 骨礦化能力 73
5.2.3 細胞形態 75
5.2.4 綜合數據比較 76
Chapter 6 結論與未來研究方向 78
dc.language.isozh-TW
dc.subject氧化鋁zh_TW
dc.subject植體表面處理zh_TW
dc.subject氧化鋯zh_TW
dc.subject原子沉積技術zh_TW
dc.subjectosseointegrationen
dc.subjectzirconium oxideen
dc.subjectaluminum oxideen
dc.subjectalkaline phosphataseen
dc.subjectosteocalcinen
dc.subjectatomic layer depositionen
dc.subjectatomic force microscopeen
dc.title以原子沉積技術改植體表面及其表現之研究zh_TW
dc.titleResearch on the Dental Implant Surface Properties and Performance Using Atomic Layer Depositionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立德,洪志遠
dc.subject.keyword植體表面處理,原子沉積技術,氧化鋯,氧化鋁,zh_TW
dc.subject.keywordatomic layer deposition,zirconium oxide,aluminum oxide,alkaline phosphatase,osteocalcin,osseointegration,atomic force microscope,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201902239
dc.rights.note有償授權
dc.date.accepted2019-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved