Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72615
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo)
dc.contributor.authorI-Ching Linen
dc.contributor.author林翊晴zh_TW
dc.date.accessioned2021-06-17T07:01:58Z-
dc.date.available2019-08-05
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citation[1] M. A. Peña and J. L. G. Fierro, Chem. Rev. 101, 1981 (2001).
[2] G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950).
[3] R. J. H. Voorhoeve, J. P. Remeika, D. W. Johnson, and P. K. Gallagher, Science (80-. ).180, 62 (1973).
[4] A. M. Glazer and IUCr, Acta Crystallogr. Sect. A 31, 756 (1975).
[5] A. M. Glazer and IUCr, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 28, 3384 (1972).
[6] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
[7] B. Raveau, Prog. Solid State Chem. 35, 171 (2007).
[8] S. Catalano, M. Gibert, J. Fowlie, J. Iñiguez, J. M. Triscone, and J. Kreisel, Reports Prog. Phys. 81, 046501 (2018).
[9] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
[10] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
[11] D. Khomskii, arXiv:cond-mat/0101164, (2001).
[12] T. Mizokawa, A. Fujimori, T. Arima, Y. Tokura, N. Mōri, and J. Akimitsu, Phys. Rev. B 52, 13865 (1995).
[13] M. Abbate, G. Zampieri, F. Prado, A. Caneiro, J. M. Gonzalez-Calbet, and M. Vallet-Regi, Phys. Rev. B 65, 155101 (2002).
[14] A. V Ushakov, S. V Streltsov, and D. I. Khomskii, J. Phys. Condens. Matter 23,445601 (2011).
[15] T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B 61, 11263 (2000).
[16] J. L. García-Muñoz, J. Rodríguez-Carvajal, and P. Lacorre, Phys. Rev. B 50, 978(1994).
[17] J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde, P. Lacorre, M. T. Fernandez-Díaz, F. Fauth, and V. Trounov, Phys. Rev. B 57, 456 (1998).
[18] R. J. Green, M. W. Haverkort, and G. A. Sawatzky, Phys. Rev. B 94, 195127 (2016).
[19] J. Pérez-Cacho, J. Blasco, J. García, M. Castro, and J. Stankiewicz, J. Phys. Condens.Matter 11, 405 (1999).
[20] A. E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, and A. Fujimori, Phys. Rev.B 46, 3771 (1992).
[21] T. Mizokawa, A. Fujimori, H. Namatame, K. Akeyama, and N. Kosugi, Phys. Rev.B 49, 7193 (1994).
[22] V. Bisogni, S. Catalano, R. J. Green, M. Gibert, R. Scherwitzl, Y. Huang, V. N. Strocov, P. Zubko, S. Balandeh, J.-M. Triscone, G. Sawatzky, and T. Schmitt, Nat. Commun. 7, 13017 (2016).
[23] R. S. Dhaka, T. Das, N. C. Plumb, Z. Ristic, W. Kong, C. E. Matt, N. Xu, K. Dolui,E. Razzoli, M. Medarde, L. Patthey, M. Shi, M. Radović, and J. Mesot, Phys. Rev.B 92, 035127 (2015).
[24] P. D. C. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Božović,D. G. Schlom, and K. M. Shen, Nat. Nanotechnol. 9, 443 (2014).
[25] R. Eguchi, A. Chainani, M. Taguchi, M. Matsunami, Y. Ishida, K. Horiba, Y. Senba,H. Ohashi, and S. Shin, Phys. Rev. B 79, 115122 (2009).
[26] S. Lee, R. Chen, and L. Balents, Phys. Rev. Lett. 106, 016405 (2011).
[27] J. Son, B. Jalan, A. P. Kajdos, L. Balents, S. James Allen, and S. Stemmer, Appl. Phys. Lett. 99, 192107 (2011).
[28] J. Son, P. Moetakef, J. M. LeBeau, D. Ouellette, L. Balents, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 96, 062114 (2010).
[29] R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J.- M. Triscone, Adv. Mater. 22, 5517 (2010).
[30] S. D. Ha, R. Jaramillo, D. M. Silevitch, F. Schoofs, K. Kerman, J. D. Baniecki, and S. Ramanathan, Phys. Rev. B 87, 125150 (2013).
[31] S.-W. Cheong, H. Y. Hwang, B. Batlogg, A. S. Cooper, and P. C. Canfield, Phys. B Condens. Matter 194–196, 1087 (1994).
[32] X. Granados, J. Fontcuberta, X. Obradors, and J. B. Torrance, Phys. Rev. B 46, 15683 (1992).
[33] X. Granados, J. Fontcuberta, X. Obradors, L. Mañosa, and J. B. Torrance, Phys. Rev. B 48, 11666 (1993).
[34] N. Gayathri, A. K. Raychaudhuri, X. Q. Xu, J. L. Peng, and R. L. Greene, J. Phys. Condens. Matter 10, 1323 (1998).
[35] J. Torrance, P. Lacorre, A. Nazzal, E. Ansaldo, and C. Niedermayer, Phys. Rev. B 45, 8209 (1992).
[36] J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).
[37] J. A. Alonso, J. L. García-Muñoz, M. T. Fernández-Díaz, M. A. G. Aranda, M. J. Martínez-Lope, and M. T. Casais, Phys. Rev. Lett. 82, 3871 (1999).
[38] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-Muñoz, and M. T. Fernández-Díaz, Phys. Rev. B 61, 1756 (2000).
[39] M. Medarde, M. T. Fernández-Díaz, and P. Lacorre, Phys. Rev. B 78, 212101 (2008).
[40] J. L. García-Muñoz, M. A. G. Aranda, J. A. Alonso, and M. J. Martínez-Lope, Phys. Rev. B 79, 134432 (2009).
[41] M. L. Medarde, J. Phys. Condens. Matter 9, 1679 (1997).
[42] G. Catalan, Phase Transitions 81, 729 (2008).
[43] H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. Lett. 109, 156402 (2012).
[44] S. Johnston, A. Mukherjee, I. Elfimov, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 112, 106404 (2014).
[45] A. Subedi, O. E. Peil, and A. Georges, Phys. Rev. B 91, 075128 (2015).
[46] J. Varignon, M. N. Grisolia, J. Íñiguez, A. Barthélémy, and M. Bibes, Npj Quantum Mater. 2, 21 (2017).
[47] S. Prosandeev, L. Bellaiche, and J. Íñiguez, Phys. Rev. B 85, 214431 (2012).
[48] S. Yamamoto and T. Fujiwara, J. Phys. Chem. Solids 63, 1347 (2002).
[49] A. Hampel and C. Ederer, Phys. Rev. B 96, 165130 (2017).
[50] Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, Phys. Rev. Lett. 75, 109 (1995).
[51] S. Middey, J. Chakhalian, P. Mahadevan, J. W. Freeland, A. J. Millis, and D. D. Sarma, Annu. Rev. Mater. Res. 46, 305 (2016).
[52] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
[53] J. Chakhalian, A. J. Millis, and J. Rondinelli, Nat. Mater. 11, 92 (2012).
[54] J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Rev. Mod. Phys. 86, 1189 (2014).
[55] A. Bhattacharya and S. J. May, Annu. Rev. Mater. Res. 44, 65 (2014).
[56] D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008).
[57] D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature 430, 657 (2004).
[58] M.-W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, and U. Gösele, Nat. Mater. 3, 87 (2004).
[59] A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B 83, 064101 (2011).
[60] H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, Science 305, 646 (2004).
[61] X.L.Li,B.Chen,H.Y.Jing,H.B.Lu,B.R.Zhao,Z.H.Mai,andQ.J.Jia,Appl. Phys. Lett. 87, 222905 (2005).
[62] O. I. Lebedev, G. Van Tendeloo, S. Amelinckx, H. L. Ju, and K. M. Krishnan, Philos. Mag. A 80, 673 (2000).
[63] A. J. Hauser, E. Mikheev, N. E. Moreno, J. Hwang, J. Y. Zhang, and S. Stemmer, Appl. Phys. Lett. 106, 092104 (2015).
[64] R. Jaramillo, F. Schoofs, S. D. Ha, and S. Ramanathan, J. Mater. Chem. C 1, 2455 (2013).
[65] N. C. Bristowe, P. Ghosez, P. B. Littlewood, and E. Artacho, J. Phys. Condens. Matter 26, 143201 (2014).
[66] J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett. 96, 133111 (2010).
[67] E. Detemple, Q. M. Ramasse, W. Sigle, G. Cristiani, H.-U. Habermeier, E. Benckiser, A. V. Boris, A. Frano, P. Wochner, M. Wu, B. Keimer, and P. A. van Aken, Appl. Phys. Lett. 99, 211903 (2011).
[68] J. M. Rondinelli, S. J. May, and J. W. Freeland, MRS Bull. 37, 261 (2012).
[69] E. J. Moon, B. A. Gray, M. Kareev, J. Liu, S. G. Altendorf, F. Strigari, L. H. Tjeng, J. W. Freeland, and J. Chakhalian, New J. Phys. 13, 073037 (2011).
[70] E. J. Moon, J. M. Rondinelli, N. Prasai, B. A. Gray, M. Kareev, J. Chakhalian, and J. L. Cohn, Phys. Rev. B 85, 121106 (2012).
[71] S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A.Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010).
[72] I. C. Tung, P. V. Balachandran, J. Liu, B. A. Gray, E. A. Karapetrova, J. H. Lee, J. Chakhalian, M. J. Bedzyk, J. M. Rondinelli, and J. W. Freeland, Phys. Rev. B 88,205112 (2013).
[73] J. Chakhalian, J. M. Rondinelli, J. Liu, B. A. Gray, M. Kareev, E. J. Moon, N. Prasai,J. L. Cohn, M. Varela, I. C. Tung, M. J. Bedzyk, S. G. Altendorf, F. Strigari, B. Dabrowski, L. H. Tjeng, P. J. Ryan, and J. W. Freeland, Phys. Rev. Lett. 107, 116805 (2011).
[74] J. Liu, M. Kargarian, M. Kareev, B. Gray, P. J. Ryan, A. Cruz, N. Tahir, Y.-D. Chuang, J. Guo, J. M. Rondinelli, J. W. Freeland, G. A. Fiete, and J. Chakhalian, Nat. Commun. 4, 2714 (2013).
[75] D. Meyers, S. Middey, M. Kareev, M. van Veenendaal, E. J. Moon, B. A. Gray, J. Liu, J. W. Freeland, and J. Chakhalian, Phys. Rev. B 88, 075116 (2013).
[76] F. Y. Bruno, K. Z. Rushchanskii, S. Valencia, Y. Dumont, C. Carrétéro, E. Jacquet, R. Abrudan, S. Blügel, M. Ležaić, M. Bibes, and A. Barthélémy, Phys. Rev. B 88, 195108 (2013).
[77] M. Hepting, M. Minola, A. Frano, G. Cristiani, G. Logvenov, E. Schierle, M. Wu, M. Bluschke, E. Weschke, H.-U. Habermeier, E. Benckiser, M. Le Tacon, and B. Keimer, Phys. Rev. Lett. 113, 227206 (2014).
[78] S. Catalano, M. Gibert, V. Bisogni, O. E. Peil, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, A. Georges, G. A. Sawatzky, T. Schmitt, and J.-M. Triscone, APL Mater. 2, 116110 (2014).
[79] J. Y. Zhang, H. Kim, E. Mikheev, A. J. Hauser, and S. Stemmer, Sci. Rep. 6, 1 (2016).
[80] M. K. Stewart, J. Liu, M. Kareev, J. Chakhalian, and D. N. Basov, Phys. Rev. Lett.107, 176401 (2011).
[81] M. K. Stewart, C.-H. Yee, J. Liu, M. Kareev, R. K. Smith, B. C. Chapler, M. Varela, P. J. Ryan, K. Haule, J. Chakhalian, and D. N. Basov, Phys. Rev. B 83, 075125 (2011).
[82] M. K. Stewart, D. Brownstead, J. Liu, M. Kareev, J. Chakhalian, and D. N. Basov, Phys. Rev. B 86, 205102 (2012).
[83] G. Catalan, R. M. Bowman, and J. M. Gregg, Phys. Rev. B 62, 7892 (2000).
[84] F. Conchon, A. Boulle, R. Guinebretière, C. Girardot, S. Pignard, J. Kreisel, F. Weiss, E. Dooryhée, and J.-L. Hodeau, Appl. Phys. Lett. 91, 192110 (2007).
[85] F. Conchon, A. Boulle, R. Guinebretière, E. Dooryhée, J.-L. Hodeau, C. Girardot, S. Pignard, J. Kreisel, and F. Weiss, J. Phys. Condens. Matter 20, 145216 (2008).
[86] P.-H. Xiang, N. Zhong, C.-G. Duan, X. D. Tang, Z. G. Hu, P. X. Yang, Z. Q. Zhu, and J. H. Chu, J. Appl. Phys. 114, 243713 (2013).
[87] F. Conchon, A. Boulle, R. Guinebretière, E. Dooryhée, J.-L. Hodeau, C. Girardot, S. Pignard, J. Kreisel, F. Weiss, L. Libralesso, and T. L. Lee, J. Appl. Phys. 103, 123501 (2008).
[88] J. Y. Zhang, H. Kim, E. Mikheev, A. J. Hauser, and S. Stemmer, Sci. Rep. 6, 1 (2016).
[89] A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A. Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni, and N. B. Brookes, Phys. Rev. Lett. 100, 137401 (2008).
[90] O. E. Peil, M. Ferrero, and A. Georges, Phys. Rev. B 90, 045128 (2014).
[91] N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).
[92] G. Singh-Bhalla, C. Bell, J. Ravichandran, W. Siemons, Y. Hikita, S. Salahuddin, A. F. Hebard, H. Y. Hwang, and R. Ramesh, Nat. Phys. 7, 80 (2011).
[93] R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. 102, 107602 (2009).
[94] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[95] S. J. May, T. S. Santos, and A. Bhattacharya, Phys. Rev. B 79, 115127 (2009).
[96] M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.-M. Triscone, Nat. Mater. 11, 195 (2012).
[97] J. Hoffman, I. C. Tung, B. B. Nelson-Cheeseman, M. Liu, J. W. Freeland, and A. Bhattacharya, Phys. Rev. B 88, 144411 (2013).
[98] A. J. Grutter, H. Yang, B. J. Kirby, M. R. Fitzsimmons, J. A. Aguiar, N. D. Browning, C. A. Jenkins, E. Arenholz, V. V. Mehta, U. S. Alaan, and Y. Suzuki, Phys. Rev. Lett. 111, 087202 (2013).
[99] P. Di Pietro, J. Hoffman, A. Bhattacharya, S. Lupi, and A. Perucchi, Phys. Rev. Lett. 114, 156801 (2015).
[100] C. Piamonteze, M. Gibert, J. Heidler, J. Dreiser, S. Rusponi, H. Brune, J.-M. Triscone, F. Nolting, and U. Staub, Phys. Rev. B 92, 014426 (2015).
[101] A. S. Disa, D. P. Kumah, A. Malashevich, H. Chen, D. A. Arena, E. D. Specht, S. Ismail-Beigi, F. J. Walker, and C. H. Ahn, Phys. Rev. Lett. 114, 026801 (2015).
[102] Chen H, Millis AJ, Marianetti CA. 2013. Engineering correlation effects via artificially designed oxide superlattices. Phys. Rev. Lett. 111:116403
[103] Y. Cao, X. Liu, M. Kareev, D. Choudhury, S. Middey, D. Meyers, J.-W. Kim, P. J. Ryan, J. W. Freeland, and J. Chakhalian, Nat. Commun. 7, 10418 (2016).
[104] M. N. Grisolia et al., Nat. Phys. 12, 484 (2016).
[105] U. Staub, G. I. Meijer, F. Fauth, R. Allenspach, J. G. Bednorz, J. Karpinski, S. M. Kazakov, L. Paolasini, and F. d’Acapito, Phys. Rev. Lett. 88, 126402 (2002).
[106] M. H. Upton, Y. Choi, H. Park, J. Liu, D. Meyers, J. Chakhalian, S. Middey, J.- W. Kim, and P. J. Ryan, Phys. Rev. Lett. 115, 036401 (2015).
[107] H. Kohl and L. Reimer, Transmission Electron Microscopy: Physics of Image Formation (2008).
[108] D. B. Williams and C. B. Carter, in Transm. Electron Microsc. (Springer, 2009).
[109] D. Shindo and T. Oikawa, Analytical Electron Microscopy for Materials Science (Springer, 2002).
[110] D. Rickerby, G. Valdrè, and U. Valdrè, Impact of Electron and Scanning Probe Microscopy on Materials Research (2012).
[111] J. M. Cowley, Applied Physics Letters 15, 58 (1969).
[112] E. Abe, and A. P. Tsai, JEOL News 36, 18 (2001).
[113]P. D. Nellist and S. J. Pennycook, Adv. Imaging Electron Phys. 113, 147 (2000).
[114]N. Tanaka, Scanning Transmission Electron Microscopy of Nanomaterials (IMPERIAL COLLEGE PRESS, 2014).
[115] S. J. Pennycook, M. F. Chisholm, Y. Yan, G. Duscher, and S. T. Pantelides, Phys. B Condens. Matter 273–274, 453 (1999).
[116] K. Ishizuka, Ultramicroscopy 90, 71 (2002).
[117] K. Watanabe, T. Yamazaki, I. Hashimoto, and M. Shiojiri, Phys. Rev. B 64, 115432 (2001).
[118] O. Scherzer, Optik 2, 114 (1947).
[119] M. Haider, H. Rose, S. Uhlemann, B. Kabius, and K. Urban, J. Electron Microsc. (Tokyo). 47, 395 (1998).
[120] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban, Ultramicroscopy 75, 53 (1998).
[121] DualEELS. Available at: https://www.eels.info/about/techniques/dual-eels. [122] Spectrum Imaging. Available at: http://www.gatan.com/techniques/spectrum-imaging.
[123] FEI Tecnai help Manual : Monochromator
[124] FEI Application note: The monochromator with X-FEG electron source exploring the frontiers in S/TEM applications
[125] P. Lacorre, J. B. Torrance, J. Pannetier, A. I. Nazzal, P. W. Wang, and T. C. Huang, J. Solid State Chem. 91, 225 (1991).
[126] J. L. García-Muñoz, J. Rodríguez-Carvajal, and P. Lacorre, Europhys. Lett. 20, 241 (1992).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72615-
dc.description.abstract隨著奈米分析的需求增加,掃描穿透式電子顯微鏡 (Scanning Transmission Electron Microscope,STEM) 在奈米材料的研究中扮演重要地位。而電子能量損失能譜(Electron Energy-loss Spectroscopy,EELS)反映了未被佔用的狀態密度(density of states)的電子特徵。結合 STEM-EELS 技術,我們得以在原子級尺度下同時處理結構訊息與電子特徵。本論文將應用搭配球面像差修正器(Cs-Corrector) 的 STEM 與EELS,揭示RNiO3 / SrTiO3 異質界面的微觀物理學(R=La,Pr,Nd),其中三組RNiO3 異質結構的厚度皆為 10 單位晶胞。鎳酸鹽(Nickelates) 本身存在金屬-絕緣體轉變(Metal-to-insulator transition) 現象,三組樣品在塊材(bulk)時在室溫皆為金屬相。雖然 LaNiO3 / SrTiO3 在室溫下保留了原本的金屬性,但 PrNiO3 / SrTiO3 和 NdNiO3 /
SrTiO3 在室溫下卻呈現絕緣性。在結構分析中顯示 PrNiO3 和 NdNiO3 薄膜的結構變形相較於塊材時更大。有趣的是在本實驗中,所有三個異質界面都表現出正電荷密度(~1014 cm-2),這與傳統觀點不一致,即絕緣性界面不應顯示電荷密度。在這項研究中,我們討論了電荷密度與對應的結構性質的相關性。
zh_TW
dc.description.abstractWith the increasing demand in structural and electronic characterizations at high spatial resolution, atomically-resolved scanning transmission electron microscope (STEM) has become an indispensable tool in modern materials research. When used in combination with electron energy-loss spectroscopy (EELS) that reflects the electronic features of unoccupied density of states, a simultaneous tackling of the structural and electronic characters at atomic resolution had been proven possible and this conjunct STEM-EELS technique is most suitable for addressing the physics at a reduced dimension. In this thesis, we report on such a STEM-EELS application in unveiling the microscopic physics across the RNiO3/SrTiO3 heterointerfaces (R = La, Pr, and Nd; RNiO3 thickness, 10 unit cells for all three heterostructural systems). The nickelates are well-known to display a metal-to-insulator transition, with the characteristic transition temperature being an intricate function of the given structural distortion, and all the three materials are metallic at room temperature in the bulk state. While the LaNiO3/SrTiO3 preserves the signature metallicity at room temperature, the PrNiO3/SrTiO3 and NdNiO3/SrTiO3 unexpectedly turn out to be insulating. A thorough structural characterization revealed that the structural distortion in the PrNiO3 and NdNiO3 films are noticeably large compared to the characteristic magnitude in the respective bulks. More surprisingly, all three heterointerfaces manifest a positive charge density (~1014/cm2), at odds with the conventional wisdom that an insulating interface is not supposed to display a residual charge density. The corresponding structure-property correlations were discussed in this work.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:01:58Z (GMT). No. of bitstreams: 1
ntu-108-R06222003-1.pdf: 20450154 bytes, checksum: 33a9a987d1de3d01e223079439e41fc9 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xii
Chapter 1 序論與文獻回顧 1
1.1 鈣鈦礦結構 ABO3 1
1.1.1 結構 1
1.1.2 過渡金屬的 d 軌域 2
1.1.3 金屬-絕緣體轉換:Mott 絕緣體與電荷轉移絕緣體 5
1.2 稀土鎳酸鹽 Rare-earth Nickelates 6
1.2.1 電子組態 6
1.2.2 RNiO3 的金屬-絕緣體轉換與相圖 7
1.3 複雜氧化物異質介面 12
1.3.1 外延應變與氧化物介面的關係 13
1.3.2 介面擴散(interdiffusion) 13
1.4 RNiO3/SrTiO3 (R=La,Pr,Nd)異質介面 15
1.4.1 外延應變對於相圖的影響 15
1.4.2 外延應變對於軌域的影響 19
1.4.3 極化不連續 21
1.4.4 電荷轉移 22
1.4.5 應變誘導自參雜(self-doping)現象 24
Chapter 2 儀器原理介紹 26
2.1 掃描穿透式電子顯微鏡 26
2.1.1 傳統穿透式電子顯微鏡與掃描穿透式電子顯微鏡的互易性 26
2.1.2 成像:Coherent and Incoherence Image 29
2.1.3 高角度環形暗場(HAADF) 31
2.1.4 球面像差修正器 (Cs-corrector) 36
2.2 電子能量損失能譜 38
2.2.1 電子能量損失能譜儀(electron energy loss spectrometer) 38
2.2.2 電子能量損失能譜 (electron energy loss spectrum) 40
2.2.3 Dual EELS 41
2.2.4 原子級能譜影像 42
2.2.5 單光器(Monochromator) 43
Chapter 3 RNiO3/SrTiO3 (R=La,Pr,Nd)異質介面 45
3.1 異質結構簡介與實驗條件 45
3.1.1 RNiO3/SrTiO3 (R=La,Pr,Nd)異質介面結構及參數 45
3.1.2 樣品成長條件 47
3.1.3 STEM-EELS 實驗參數 48
3.2 應變與結構 49
3.3 化學組成與擴散現象 52
3.3.1 化學組成比例 53
3.3.2 介面擴散 55
3.4 一維掃描能譜(line scan)與原子價數 56
3.5 電荷分佈 61
Chapter 4 總結與未來期望 66
參考文獻 67
dc.language.isozh-TW
dc.subject氧化物異質結構zh_TW
dc.subject鎳酸鹽zh_TW
dc.subject電子能量損失能譜zh_TW
dc.subject掃描穿透式電子顯微鏡zh_TW
dc.subject金屬-絕緣體轉變zh_TW
dc.subjectScanning transmission electron microscope (STEM)en
dc.subjectelectron energy-loss spectroscopy (EELS)en
dc.subjectnickelatesen
dc.subjectmetal-to-insulator transitionen
dc.subjectoxide heterostructuresen
dc.title"利用掃描穿透式電子顯微鏡結合電子能量損失能譜於RNiO3/SrTiO3(R=La,Pr,Nd)氧化物異質介面之研究"zh_TW
dc.titleStudy of RNiO3/SrTiO3 (R=La,Pr,Nd)Oxide Heterointerface by Scanning Transmission Electron Microscopy Combined with Electron Energy-Loss Spectroscopyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor朱明文(Ming-Wen Chu)
dc.contributor.oralexamcommittee朱英豪,陳永芳(Yang-Fang Chen)
dc.subject.keyword掃描穿透式電子顯微鏡,電子能量損失能譜,氧化物異質結構,鎳酸鹽,金屬-絕緣體轉變,zh_TW
dc.subject.keywordScanning transmission electron microscope (STEM),electron energy-loss spectroscopy (EELS),oxide heterostructures,metal-to-insulator transition,nickelates,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201902104
dc.rights.note有償授權
dc.date.accepted2019-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
19.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved