Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72612
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鈞棣
dc.contributor.authorBo-Chen Jhanen
dc.contributor.author詹博丞zh_TW
dc.date.accessioned2021-06-17T07:01:54Z-
dc.date.available2019-08-05
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citation[1] C. L. Shen, W. J. Xie, and B. Wei, 'Parametrically excited sectorial oscillation of liquid drops floating in ultrasound,' Phys Rev E Stat Nonlin Soft Matter Phys, vol. 81, no. 4 Pt 2, p. 046305, Apr 2010.
[2] Z. Yan, W. Xie, D. Geng, and B. Wei, 'The ninth-mode sectorial oscillation of acoustically levitated drops,' Chinese Science Bulletin, vol. 56, no. 31, pp. 3284-3288, 2011.
[3] D. L. Geng, W. J. Xie, N. Yan, and B. Wei, 'Vertical vibration and shape oscillation of acoustically levitated water drops,' Applied Physics Letters, vol. 105, no. 10, 2014.
[4] D. A. W. A.L. Yarin, G. Brenn, D. Rensink, 'Acoustically levitated drops: drop oscillation and break-up driven by ultrasound modulation,' International Journal of Multiphase Flow, vol. 28, pp. 887–910, 2002.
[5] P. C. Lin and L. I, 'Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding,' Phys Rev E, vol. 93, no. 2, p. 021101, Feb 2016.
[6] C. L. Shen, W. J. Xie, and B. Wei, 'Parametric resonance in acoustically levitated water drops,' Physics Letters A, vol. 374, no. 23, pp. 2301-2304, 2010.
[7] C. D. C. J. R. Gao, and B. Wei, 'Containerless processing of materials by acoustic levitation,' Elsevier Science Ltd, vol. 24, pp. 1293-1297, 1999.
[8] D. L. Geng, W. J. Xie, and B. Wei, 'Containerless solidification of acoustically levitated Ni–Sn eutectic alloy,' Applied Physics A, vol. 109, no. 1, pp. 239-244, 2012.
[9] K. Ohsaka and E. H. Trinh, 'Undercooling of acoustically levitated molten drops,' Journal of Crystal Growth, vol. 106, pp. 191-196, 1990.
[10] L. V.King, 'On the acoustic radiation pressure on spheres,' Proc. R. Soc. A Math. Phys. Eng. Sci, vol. 147, no. 861, pp. 212-240, 1934.
[11] L. P. Gor’kov, 'On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid,' Solviet Phys. Dokl, vol. 6, p. 773, 1962.
[12] D. Zang, K. Lin, L. Li, Z. Chen, X. Li, and X. Geng, 'Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound,' Applied Physics Letters, vol. 110, no. 12, 2017.
[13] S. Zhao and J. Wallaschek, 'A standing wave acoustic levitation system for large planar objects,' Archive of Applied Mechanics, vol. 81, no. 2, pp. 123-139, 2009.
[14] M. A. B. Andrade, A. L. Bernassau, and J. C. Adamowski, 'Acoustic levitation of a large solid sphere,' Applied Physics Letters, vol. 109, no. 4, 2016.
[15] D. Zang, Y. Yu, Z. Chen, X. Li, H. Wu, and X. Geng, 'Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions,' Adv Colloid Interface Sci, vol. 243, pp. 77-85, May 2017.
[16] W. J. Xie, C. D. Cao, Y. J. Lü, Z. Y. Hong, and B. Wei, 'Acoustic method for levitation of small living animals,' Applied Physics Letters, vol. 89, no. 21, 2006.
[17] A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, and S. Subramanian, 'Holographic acoustic elements for manipulation of levitated objects,' Nature Communications, vol. 6, p. 8661, Oct 27 2015.
[18] V. Vandaele, P. Lambert, and A. Delchambre, 'Non-contact handling in microassembly: Acoustical levitation,' Precision Engineering, vol. 29, no. 4, pp. 491-505, 2005.
[19] E. H. BRANDT, 'Levitation in Physics,' Science, vol. 243, pp. 349-355, 1989.
[20] A. Ashkin, 'Acceleration and Trapping of Particles by Radiation Pressure,' Physical Review Letters, vol. 24, no. 4, pp. 156-159, 1970.
[21] W. J. Xie and B. Wei, 'Parametric study of single-axis acoustic levitation,' Applied Physics Letters, vol. 79, no. 6, pp. 881-883, 2001.
[22] W. J. Xie and B. Wei, 'Dependence of acoustic levitation capabilities on geometric parameters,' Phys Rev E Stat Nonlin Soft Matter Phys, vol. 66, no. 2 Pt 2, p. 026605, Aug 2002.
[23] W. J. Xie and B. Wei, 'Dynamics of acoustically levitated disk samples,' Phys Rev E Stat Nonlin Soft Matter Phys, vol. 70, no. 4 Pt 2, p. 046611, Oct 2004.
[24] E. H. Trinh, 'Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity,' Review of Scientific Instruments, vol. 56, no. 11, pp. 2059-2065, 1985.
[25] W. J. Xie and B. Wei, 'Temperature dependence of single-axis acoustic levitation,' Journal of Applied Physics, vol. 93, no. 5, pp. 3016-3021, 2003.
[26] K. Ohsaka and E. H. Trinh, 'Three-Lobed Shape Bifurcation of Rotating Liquid Drops,' Physical Review Letters, vol. 84, 2000.
[27] PHILIP L. MARSTON and ROBERT E. APFEL, 'Acoustically Forced Shape Oscillation of Hydrocarbon Drops Levitated in Water,' Journal of Colloid and Interface Science, vol. 68, pp. 280-286, 1979.
[28] T. J. Asaki, P. L. Marston, and E. H. Trinh, 'Shape oscillations of bubbles in water driven by modulated ultrasonic radiation pressure: Observations and detection with scattered laser light,' The Journal of the Acoustical Society of America, vol. 93, no. 2, pp. 706-713, 1993.
[29] E. H. Trinh, D. B. Thiessen, and R. G. Holt, 'Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: experimental results,' Journal of Fluid Mechanics, vol. 364, pp. 253-272, 1998.
[30] F. R. S. Lord Rayleigh, 'On the capillary phenomena of jets,' Proc. R. Soc. Lond., vol. 29, pp. 71-97, 1879.
[31] H. Lamb, 'Hydrodynamics,' Cambridge University Press, 1932.
[32] P. Grinfeld, 'Small Oscillations of a Soap Bubble,' Studies in Applied Mathematics, vol. 128, no. 1, pp. 30-39, 2012.
[33] K. Ohsaka and E. H. Trinh, 'A two-frequency acoustic technique for bubble resonant oscillation studies,' The Journal of the Acoustical Society of America, vol. 107, no. 3, pp. 1346-1351, 2000.
[34] K. Ohsaka and E. H. Trinh, 'Resonant coupling of oscillating gas or vapor bubbles in water: An experimental study,' Physics of Fluids, vol. 12, no. 2, pp. 283-288, 2000.
[35] Z. Y. Hong et al., 'Dynamics of levitated objects in acoustic vortex fields,' Scientific Reports, vol. 7, no. 1, p. 7093, Aug 2 2017.
[36] M. A. B. Andrade, N. Pérez, and J. C. Adamowski, 'Review of Progress in Acoustic Levitation,' Brazilian Journal of Physics, vol. 48, no. 2, pp. 190-213, 2017.
[37] Rey, 'Acoustic Levitation And Methods For Manipulating Levitated Objects,' U.S. patent, vol. 4,284,203, 1981.
[38] M. A. B. Andrade, N. Pérez, and J. C. Adamowski, 'Analysis of a Non-resonant Ultrasonic Levitation Device,' Physics Procedia, vol. 70, pp. 68-71, 2015.
[39] M. A. B. Andrade, N. Pérez, and J. C. Adamowski, 'Particle manipulation by a non-resonant acoustic levitator,' Applied Physics Letters, vol. 106, no. 1, 2015.
[40] S. Ueha., Y. Hashimoto., and Y. Koike., 'Non-contact transportation using near-field acoustic levitation,' Ultrasonic vol. 38, pp. 26-32, 2000.
[41] M. A. B. Andrade, F. T. A. Okina, A. L. Bernassau, and J. C. Adamowski, 'Acoustic levitation of an object larger than the acoustic wavelength,' J Acoust Soc Am, vol. 141, no. 6, p. 4148, Jun 2017.
[42] A. Marzo, A. Barnes, and B. W. Drinkwater, 'TinyLev: A multi-emitter single-axis acoustic levitator,' Rev Sci Instrum, vol. 88, no. 8, p. 085105, Aug 2017.
[43] H. Bruus, 'Acoustofluidics 2: perturbation theory and ultrasound resonance modes,' Lab Chip, vol. 12, no. 1, pp. 20-8, Jan 7 2012.
[44] H. Bruus, 'Acoustofluidics 7: The acoustic radiation force on small particles,' Lab Chip, vol. 12, no. 6, pp. 1014-21, Mar 21 2012.
[45] K. Yosioka and Y. Kawasima, 'Acoustic radiation pressure on a compressible sphere,' Acta Acustica united with Acustica, vol. 5, pp. 167-173, 1955.
[46] M. A. B. Andrade, N. Pérez, and J. C. Adamowski, 'Acoustic Levitation,' Revista Brasileira de Ensino de Física, vol. 37, no. 2, pp. 2304-1-2304-7, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72612-
dc.description.abstract本研究我們建立了非共振型懸浮系統,並探討薄片狀物體的面積、密度等參數如何影響聲波懸浮的難度。測試結果顯示薄片樣本的密度、厚度越大,會越難被懸浮。而樣本的面積在臨界面積以下,面積越大會越容易懸浮,超過臨界面積則相反,我們由實驗數據的擬合結果得到面積公式。而樣本形狀的測試結果顯示正方形會比長條形容易懸浮、實心圓會比圓環容易懸浮。我們由水平聲場量測結果定義了形狀參數,此參數越大代表樣本接收聲波輻射力的程度越好。我們將此參數與實驗結果進行擬合,得到形狀公式,但此公式對於小面積物體的預測與實驗結果是相反的,可能是因為聲場的非軸對稱或懸浮物的質心並非落在懸浮器中心軸上等原因。最後,藉由形狀公式與面積公式,我們預測不同密度、尺寸的圓球與橢球被懸浮所需的聲壓。zh_TW
dc.description.abstractIn this research, we established a non-resonant acoustic levitation system. We also discussed the effects of thicknesses, areas, densities, and shapes of planar objects on the difficulty of levitation. The experimental results show that sound pressure required to levitate the objects increases as their thicknesses or densities increase. As for the objects’ areas, the difficulty of levitation decreases with the increasing areas of the objects when the areas are lower than a critical value. Otherwise, the larger the areas of the objects are, the harder they are to be levitated. We defined a shape factor by results of sound field measurement. This factor can describe the extent of acoustic radiation forces that the objects received in the same sound field. Then we got the area formula and the shape formula by curve fitting. However, the prediction of the shape formula is contrary to the experimental data for the objects of low areas. We thought it is because the sound field inside the levitator was not axisymmetric and the centroids of the levitated objects were not located on the central axis of the levitator. Finally, by the area formula and the shape formula, we predicted the sound pressure required to levitate a sphere or an ellipsoid of arbitrary density.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:01:54Z (GMT). No. of bitstreams: 1
ntu-108-R06522107-1.pdf: 2351795 bytes, checksum: f43ee527d2fd3d1c47e4967096f7a997 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 1
1.2.1共振型懸浮系統 1
1.2.2其他懸浮系統 8
1.2.3聲波輻射力 12
第二章 研究方法 15
2.1共振型懸浮系統 15
2.2非共振型懸浮系統 17
2.3聲場量測 23
2.4探討影響懸浮之參數 27
2.5最終版實驗架設 28
第三章 結果與討論 30
3.1密度的影響 30
3.2厚度的影響 32
3.3面積的影響 33
3.4形狀的影響 34
3.5參數影響綜合分析 39
3.6預測圓球與橢球的懸浮聲壓 47
第四章 結論與未來展望 50
參考文獻 51
dc.language.isozh-TW
dc.title聲波懸浮系統中懸浮物之參數討論zh_TW
dc.titleParameters of levitated objects in acoustic levitation systemen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖英志,蘇偉?
dc.subject.keyword非共振型懸浮系統,聲波懸浮,薄片,形狀參數,聲波輻射力,zh_TW
dc.subject.keywordnon-resonant,acoustic levitation,planar object,shape factor,acoustic radiation force,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201902240
dc.rights.note有償授權
dc.date.accepted2019-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved