請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72611
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳蕙芬 | |
dc.contributor.author | Hsiao-Jung Chen | en |
dc.contributor.author | 陳筱蓉 | zh_TW |
dc.date.accessioned | 2021-06-17T07:01:53Z | - |
dc.date.available | 2024-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-31 | |
dc.identifier.citation | Ahmed, E. H., T. Raghavendra and D. Madamwar (2010). An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: Application for ethyl caprylate synthesis. Bioresour Technol 101: 3628-3634.
Christopher, L. P., V. P. Zambare, A. Zambare, H. Kumar and L. Malek (2015). A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. Journal of Chemical Technology and Biotechnology 90: 2007-2016. Esteban-Torres, M., J. M. Mancheño, B. de las Rivas and R. Muñoz (2015). Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT - Food Science and Technology 60: 246-252. Guncheva, M. and D. Zhiryakova (2011). Catalytic properties and potential applications of Bacillus lipases. Journal of Molecular Catalysis B-Enzymatic 68: 1-21. Gupta, R., N. Gupta and P. Rathi (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64: 763- 781. Karmee, S. K., R. D. Patria and C. S. Lin (2015). Techno-economic evaluation ofbiodiesel production from waste cooking oil--a case study of Hong Kong. Int J Mol Sci 16: 4362-4371. Khan, F. I., D. Lan, R. Durrani, W. Huan, Z. Zhao and Y. Wang (2017). The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties.Front Bioeng Biotechnol 5: 16. Kim, K. K., H. K. Song, D. H. Shin, K. Y. Hwang and S. W. Suh (1997). The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5: 173-185. Nagarajan, S. (2012). New tools for exploring old friends-microbial lipases. Appl Biochem Biotechnol 168: 1163-1196. Nerurkar, M., M. Joshi, S. Pariti and R. Adivarekar (2013). Application of Lipase from Marine Bacteria Bacillus sonorensis as an Additive in Detergent Formulation. Journal of Surfactants and Detergents 16: 435-443. Niyonzima, F. N. and S. S. More (2015). Coproduction of detergent compatible bacterial enzymes and stain removal evaluation. J Basic Microbiol 55: 1149-1158. Schrag, J. D., Y. Li, M. Cygler, D. Lang, T. Burgdorf, H. J. Hecht, R. Schmid, D. Schomburg, T. J. Rydel, J. D. Oliver, L. C. Strickland, C. M. Dunaway, S. B. Larson, J. Day and A. McPherson (1997). 'The open conformation of aPseudomonas lipase. Structure 5: 187-202. Snellman, E. A. and R. R. Colwell (2004). Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J Ind Microbiol Biotechnol 31: 391-400. Sangeetha, R.(2011). Bacterial lipases as potential industrial biocatalysts: An overview. Res. J. Microbiol 6:1-24. Boonmahome, P., Mongkolthanaruk W.(2013). Lipase-producing bacterium and its. enzyme characterization. J. Life Sci. Technol. 1:196-200. Nardini, M., et al.(2000). Crystal structure of Pseudomonas aeruginosa lipase in the open conformation - The prototype for family I.1 of bacterial lipases. Journal of Biological Chemistry. 275: 31219-31225. Lee, W.H., et al.(1995). Enzymatic resolution of racemic ibuprofen esters: Effects of organic cosolvents and temperature. Journal of Fermentation and Bioengineering. 80: 613-615. Ema, T.(2004). Mechanism of enantioselectivity of lipases and other synthetically useful hydrolases. Current Organic Chemistry. 8: 1009-1025. Carvalho, P.O., et al. (2006). Review - Alternatives for the separation of drug enantiomers: Ibuprofen as a model compound. Brazilian Journal of Chemical Engineering. 23: 291-300. Fjerbaek, L., K.V. Christensen, and B. Norddahl. (2009). A Review of the Current State of Biodiesel Production Using Enzymatic Transesterification. Biotechnology and Bioengineering. 102: 1298-1315. Rigo, E., et al. (2010). Lipase production by solid fermentation of soybean meal with different supplements. Lwt-Food Science and Technology. 43: 1132-1137. Novototskaya-Vlasova, K., et al. (2013). Expression and chaperone-assisted refolding of a new cold-active lipase from Psychrobacter cryohalolentis K5(T). Protein Expression and Purification. 91: 96-103. Golaki, B.P., et al. (2015). Cloning, expression, purification, and characterization of. lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expression and Purification. 109: 120-126. Bhardwaj, K.K. and R. Gupta (2017). Synthesis of Chirally Pure Enantiomers by Lipase. Journal of Oleo Science. 66: 1073-1084. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72611 | - |
dc.description.abstract | 微生物所分泌的脂肪酶最常被應用於工業,因其容易取得,且分離純化上比 較容易,因此脂肪酶在研究之中依然佔有一席之地。而其中對於 Acinetobacter spp.的研究相較於其他菌株所知甚少,但從目前的文獻可以發現 Acinetobacter spp. 的耐熱及耐鹼的特性經常被應用在工業及製藥等等方面。
本篇從日月潭湖水中所分離出的菌株經過 16S rDNA 定序確認其基因序列與 Acinetobacter junii strain WCHAJ59、Acinetobacter junii strain VITSSJ、 Acinetobacter junii strain KNDSW28、Acinetobacter junii strain CAM121、 Acinetobacter junii strain IZXH15 皆有 98%的相似性,暫時命名為 Acinetobacter junii C-01 且其所分泌的胞外酵素能在 Trybutyrin agar 上產生透明的降解圈且菌株 能在 Tween20 單一營養源平板培養基上生長,經過分離純化將所得的蛋白質利用 ESI-MS-MS(electrospray ionization-tandem mass spectrometry)進行分析,確認其 蛋白質序列與 Acinetobacter junii triacylglycerol lipase 有 99%的相似性,分子量約 為 36kDa。並利用蛋白質序列建立親緣性樹圖發現其與來自 family 1 的 Pseudomonos aeruginosa PAO1 蛋白質序列親緣關係最為相近。所分離出的胞外脂 肪酶其最適作用溫度為 42°C、最適作用酸鹼值為 pH7 ; 此脂肪酶在 16°C~65°C、 pH9~10 穩定性皆良好。相對於短鏈酯質更偏好長鏈酯質,其中當受質為 p- nitrophenyl palmitate(p-NPC16)時,其水解能力為最佳。在 5mM 濃度下五種金屬離子皆會造成明顯的抑制情形。在 0.5%及 5%濃度下,Tween 80 和 Triton X-100 以及 Tween20 皆顯著增加活性,但 SDS 則會明顯抑制活性。在 20%濃度下所有 的有機溶劑皆會造成活性降低。 | zh_TW |
dc.description.abstract | The lipase secreted by microorganisms is most commonly used in industry. Because it is easy to obtain and easy to separate and purify, lipase still very important in research. However, the lipase in Acinetobacter spp. is poorly known while compared with that in other strains. Since the lipase is heat-resistant and alkali-resistant properties of Acinetobacter spp., it is often used in industry and pharmaceutics.
The bacterium isolated from the water of Sun Moon Lake was PCR-amplified the 16S rDNA and its resulting nucleotides were shown 98% similar to Acinetobacter junii strain WCHAJ59、Acinetobacter junii strain VITSSJ、Acinetobacter junii strain KNDSW28、Acinetobacter junii strain CAM121、Acinetobacter junii strain IZXH15. It was therefore named Acinetobacter junii C-01 and its secreted extracellular enzyme was able to generate a degradation zone on Trybutyrin agar and the strain can grow on Tween20 single nutrient carbon source plate medium. After separation and purification, the obtained single protein was analyzed by ESI-MS-MS (electrospray ionization- tandem mass spectrometry) to identify the protein ID and it was found that this lipase protein has 99% similarity to the Acinetobacter junii triacylglycerol lipase with a molecular weight of approximately 36 kDa. Also, a phylogenetic tree of lipase proteins was constructed, the A. junii C-01 lipase is mostly related to the family 1 Pseudomonos aeruginosa PAO1 lipase protein. The isolated extracellular lipase has an optimal activity at temperature 42°C and pH 7; also it has stabilities from 16°C to 65°C and pH 9 to 10. Also, it has preferred long-chain esters over short-chain esters, where its hydrolysis activity has an optimal function when the substrate is p-nitrophenyl palmitate (p- NPC16). However, five metal ions at 5 mM concentration caused a significant inhibition of its lipase activity. In contrast, Tween 80 and Triton X-100 and Tween20significantly increased the lipase A activity. But SDS considerably inhibited its activity. Also, the other organic solvents cause a decrease in its activity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:53Z (GMT). No. of bitstreams: 1 ntu-108-R06623024-1.pdf: 8490075 bytes, checksum: 93f29ecd69712215b92010b6f94e66d0 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 ................................................................. i
Abstract................................................................. iii 目錄 .................................................................. v 表目錄......................................................................... ix 圖目錄............................................................................... x 附錄目錄 .............................................................................. xii 1. 緒論.....................................................................................................1 1.1 研究緣起 ............................................................................................................. 1 1.2 研究方向及目的 ................................................................................................ 2 2. 文獻回顧..................................................................................................................3 2.1 脂肪酶 ............................................................................................................... 3 2.2 脂肪酶的結構特性 .............................................................................................. 5 2.3 脂肪酶的催化機制 .............................................................................................. 5 2.4 脂肪酶的位置專一性 .......................................................................................... 9 2.5 脂肪酶的催化形式 .............................................................................................. 9 2.6 脂肪酶應用 ...................................................................................................... 10 2.7 Acinetobacter spp. 脂肪酶介紹 ....................................................................... 18 3. 材料與方法........................................................................................23 3.1 實驗器材 .......................................................................................................... 23 3.1.1 藥品、酵素及相關套組 ............................................................................... 23 3.1.2 實驗設備 ....................................................................................................... 23 3.1.3 分析及製圖軟體 ........................................................................................... 24 3.2 培養基 ........................................................................................................................ 24 3.3 篩選土壤及水中微生物 .................................................................................... 26 3.3.1 樣品收集 ....................................................................................................... 26 3.3.2 增值培養(Enrichment culture) ................................................................ 26 3.3.3 16S rRNA 基因序列之聚合酶連鎖反應(Polymerase chain reaction, PCR)......................................................................................... 28 3.3.4 PCR 產物純化............................................................................................... 28 3.3.5 DNA 瓊脂膠體(Agarose gel)電泳 .......................................................... 29 3.4 胞外蛋白質分析 ............................................................................................... 29 3.4.1 培養條件 ....................................................................................................... 29 3.4.2 超濾 Ultrafiltration (MW: 10,000) ............................................................... 29 3.4.3 膠體過濾法 Gel filtration(Sephadex G-100) ............................................... 30 3.4.4 ESI-MS-MS(electrospray ionization-tandem mass spectrometry) .......... 30 3.4.5 建立親緣關係圖 ........................................................................................... 30 3.4.6 十二浣基硫酸鈉聚丙烯醯胺凝膠電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) ................................................................... 31 3.4.7 胞外蛋白質定量 ........................................................................................... 31 3.5 夾出目標基因核苷酸序列 ................................................................................. 32 3.5.1 抽取染色體 DNA.......................................................................................... 32 3.5.2 聚合酶連鎖反應(Polymerase chain reaction, PCR) ................................ 32 3.5.3 質體 DNA 製備............................................................................................. 33 3.6 胞外酵素性質測定 ........................................................................................... 34 3.6.1 胞外酵素活性測定 ....................................................................................... 34 3.6.2 胞外酵素受質特異性測定..........................................................................35 3.6.3 測定溫度對胞外酵素活性及熱穩定性的影響 ............................................ 35 3.6.4 測定 pH 值對胞外酵素活性及穩定性的影響 ............................................ 35 3.6.5 不同金屬離子對胞外酵素活性的影響 ....................................................... 36 3.6.6 不同介面活性劑對胞外酵素活性的影響 ................................................... 36 3.6.7 不同有機溶劑對胞外酵素活性的影響 ....................................................... 37 3.7 不同營養來源對生長之影響 .............................................................................. 37 4. 結果與討論......................................................................................................................38 4.1 土壤及水中微生物篩選 ..................................................................................... 38 4.1.1 土壤及水中微生物序列分析 ....................................................................... 38 4.2 胞外蛋白質及其序列分析.................................................................................38 4.2.1 胞外蛋白質純化及分析 ............................................................................... 38 4.2.2 蛋白質及核苷酸序列分析 ........................................................................... 39 4.2.3 親緣關係圖 ................................................................................................... 40 4.2.4 胞外酵素性質分析 ....................................................................................... 40 4.2.5 胞外脂肪酶之受質特異性 ........................................................................... 40 4.2.6 胞外酵素於不同溫度下之活性及穩定性測試 ............................................ 41 4.2.7 胞外酵素於不同 pH 下之活性及穩定性測試 ............................................ 42 4.2.8 胞外酵素於不同金屬離子存在下之活性測試 ................................................... 42 4.2.9 胞外酵素於不同界面活性劑存在下之活性測試 ................................................ 43 4.2.10 胞外酵素於不同有機溶劑存在下之活性測試 ............................................. 44 4.3 不同營養源對生長之影響 ................................................................................. 44 5. 綜合討論........................................................................................................................46 6. 結論...........................................................................................................................49 7. 參考文獻........................................................................................................................50 8. 圖表集.........................................................................................................................54 9. 附錄..........................................................................................................................87 表目錄 表 2-1 在近期文獻中提到的生產脂肪酶的菌株 .......................................................... 4 表 2-2 細菌脂肪酶來源 .......................................................................................... 14 表 2-3 商業用細菌脂肪酶來源及應用 ...................................................................... 16 表 2-4 分離出 Acinetobacter strains 脂肪酶的來源................................................ 20 表 2-5 Acinetobacter lipase 生化特性.................................................................... 22 表一、Acinetobacter junii C-01 胞外脂肪酶之受質特異性活性測定...........................54 表二、胞外脂肪酶於不同溫度下之酵素活性測定........................................................55 表三、胞外脂肪酶於不同溫度下之酵素穩定性測定....................................................56 表四、胞外脂肪酶於不同 pH 值下之酵素活性測定..................................................57 表五、胞外脂肪酶於不同 pH 值下之酵素穩定性測定..............................................58 表六、胞外脂肪酶於不同金屬離子存在下之酵素活性測定.......................................59 表七、胞外脂肪酶於不同界面活性劑存在下之酵素活性測定...................................60 表八、胞外脂肪酶於不同有機溶劑存在下之酵素活性測定.......................................61 表九、在不同時間下之酵素活性及生長情形...........................................................62 表十、不同營養源對生長情形之影響....................................................63 圖目錄 圖 2-1 The common lipase fold ............................................................................... 7 圖 2-2 Alpha-helix lid open and close..................................................................... 7 圖 2-3 不同細菌所生產之脂肪酶胺基酸序列比對( G-X-S-X-G motif )..................... 8 圖 2-4 The overall fold of Pseudomonas cepacia lipase ....................................... 19 圖 2-5 Subfamilies I.1 and I.2 脂肪酶序列比對 ...................................................... 21 圖一、Acinetobacter junii C-01 於 Tween 20 agar 上之生長菌落..........................64 圖二、Acinetobacter junii C-01 於 Tributyrin agar 上之降解圈.............................64 圖三、Acinetobacter junii C-01 16S rDNA 定序結果之樹狀圖...............................65 圖四、以蛋白質變性膠體電泳分析 Acinetobacter junii C-01 胞外脂肪酶純化情形...................................................................................................66 圖五、胞外脂肪酶於 Tributyrin agar 之測試結果...................................................66 圖六、質譜儀分析結果.........................................................................................67 圖七、Acinetobacter junii C-01 胞外脂肪酶基因核苷酸序列及胺基酸序列.............68 圖八、Acinetobacter junii C-01 胞外脂肪酶胺基酸序列與 Acinetobacter junii. triacylglycerol lipase 比對結果............................................................................69 圖九、Acinetobacter junii C-01 胞外脂肪酶胺基酸序列與不同之 Acinetobacter. spp. 脂肪酶胺基酸序列親緣關係樹圖...........................................70 圖十、Acinetobacter junii C-01 胞外脂肪酶胺基酸序列與來自 Family1~8 不同菌 種脂肪酶胺基酸序列親緣關係樹圖................................................................................71 圖十一、預測之蛋白質 3D 結構.............................................................................72 圖十二、在不同時間下之酵素活性及生長情形........................................................73 圖十三、Acinetobacter junii C-01 胞外脂肪酶之受質特異性活性測定.....................74 圖十四、胞外脂肪酶於不同溫度下之酵素活性測定..................................................75 圖十五、胞外脂肪酶於不同溫度下之酵素穩定性測定...............................................76 圖十六、胞外脂肪酶於不同 pH 值下之酵素活性測定...............................................77 圖十七、胞外脂肪酶於不同 pH 值下之酵素穩定性測定............................................78 圖十八、胞外脂肪酶於不同金屬離子(1mM)存在下之酵素活性測定...........................79 圖十九、胞外脂肪酶於不同金屬離子(5mM)存在下之酵素活性測定...........................80 圖二十、胞外脂肪酶於不同界面活性劑(0.5%)存在下之酵素活性測定........................81 圖二十一、胞外脂肪酶於不同界面活性劑(5%)存在下之酵素活性測定........................82 圖二十二、胞外脂肪酶於不同有機溶劑(0.5%)存在下之酵素活性測定.........................83 圖二十三、胞外脂肪酶於不同有機溶劑(20%)存在下之酵素活性測定..........................84 圖二十四、不同營養源對生長情形之影響..................................................................85 圖二十五、經 IPTG 誘導之轉殖株............................................................................86 附錄目錄 附錄一、BSA 蛋白質之檢量線.................................................................................87 附錄二、對硝基苯酚之檢量線..................................................................................87 附錄三、本論文所使用之菌株..................................................................................88 附錄四、本論文所使用之質體..................................................................................88 附錄五、本試驗所使用之引子..................................................................................88 | |
dc.language.iso | zh-TW | |
dc.title | Acinetobacter junii C-01 胞外脂肪酶之分離純化及特性 | zh_TW |
dc.title | Purification and characterization of extracellular lipase from Acinetobacter junii C-01 | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐駿森,邱志郁,陳建德,余建泓 | |
dc.subject.keyword | 胞外脂肪?,不動桿菌屬,酵素活性測試,16S rDNA 定序,電灑法質譜儀分析, | zh_TW |
dc.subject.keyword | Acinetobacter spp.,Extracellular lipase,Enzyme activity test,16S rDNA sequencing,ESI-MS-MS, | en |
dc.relation.page | 88 | |
dc.identifier.doi | 10.6342/NTU201900930 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-31 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 8.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。