Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7260
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛雁冰
dc.contributor.authorHung-Che Linen
dc.contributor.author林宏澤zh_TW
dc.date.accessioned2021-05-19T17:40:42Z-
dc.date.available2021-08-13
dc.date.available2021-05-19T17:40:42Z-
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-01
dc.identifier.citationButcher, R.A., Fujita, M., Schroeder, F.C., and Clardy, J. (2007). Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol 3, 420.
Choe, A., von Reuss, S.H., Kogan, D., Gasser, R.B., Platzer, E.G., Schroeder, F.C., and Sternberg, P.W. (2012). Ascaroside signaling is widely conserved among nematodes. Curr Biol 22, 772-780.
de Ulzurrun, G.V.-D., Huang, T.-Y., Chang, C.-W., Lin, H.-C., and Hsueh, Y.-P. (2019). Fungal Feature Tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. bioRxiv, 659672.
DeZwaan, T.M., Carroll, A.M., Valent, B., and Sweigard, J.A. (1999). Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell 11, 2013-2030.
Duddington, C. (1957). The predacious fungi and their place in microbial ecology, Vol 218 (Cambridge University Press, Cambridge).
Gray, N. (1987). Nematophagous fungi with particular reference to their ecology. Biological Reviews 62, 245-304.
Hamel, L.P., Nicole, M.C., Duplessis, S., and Ellis, B.E. (2012). Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24, 1327-1351.
Hsueh, Y.-P., Mahanti, P., Schroeder, F.C., and Sternberg, P.W. (2013). Nematode-trapping fungi eavesdrop on nematode pheromones. Current biology : CB 23, 83-86.
Hsueh, Y.P., Gronquist, M.R., Schwarz, E.M., Nath, R.D., Lee, C.H., Gharib, S., Schroeder, F.C., and Sternberg, P.W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 6.
Jiang, C., Zhang, X., Liu, H., and Xu, J.R. (2018). Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog 14, e1006875.
Khan, M.R. (2015). Nematophagous Fungi: Ecology, Diversity and Geographical Distribution. In.
Kim, K., Sato, K., Shibuya, M., Zeiger, D.M., Butcher, R.A., Ragains, J.R., Clardy, J., Touhara, K., and Sengupta, P. (2009). Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science (New York, NY) 326, 994-998.
Kou, Y., and Naqvi, N.I. (2016). Surface sensing and signaling networks in plant pathogenic fungi. Paper presented at: Semin Cell Dev Biol (Elsevier).
Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754-1760.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., and Daly, M. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303.
Nieuwenhuis, B.P.S., and Aanen, D.K. (2018). Nuclear arms races: Experimental evolution for mating success in the mushroom-forming fungus Schizophyllum commune. PLoS One 13, e0209671.
Pandit, R., Patel, R., Patel, N., Bhatt, V., Joshi, C., Singh, P.K., and Kunjadia, A. (2017). RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi. World J Microbiol Biotechnol 33, 65.
Su, H., Zhao, Y., Zhou, J., Feng, H., Jiang, D., Zhang, K.Q., and Yang, J. (2017). Trapping devices of nematode‐trapping fungi: formation, evolution, and genomic perspectives. Biological Reviews 92, 357-368.
Toll-Riera, M., San Millan, A., Wagner, A., and MacLean, R.C. (2016). The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa. PLoS Genet 12, e1006005.
Turra, D., El Ghalid, M., Rossi, F., and Di Pietro, A. (2015). Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527, 521-524.
Waghorn, T.S., Leathwick, D.M., Chen, L.Y., and Skipp, R.A. (2003). Efficacy of the nematode-trapping fungus Duddingtonia flagrans against three species of gastro-intestinal nematodes in laboratory faecal cultures from sheep and goats. Vet Parasitol 118, 227-234.
Waller, P.J., Knox, M.R., and Faedo, M. (2001). The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: feeding and block studies with Duddingtonia flagrans. Vet Parasitol 102, 321-330.
Yang, J., Wang, L., Ji, X., Feng, Y., Li, X., Zou, C., Xu, J., Ren, Y., Mi, Q., Wu, J., et al. (2011). Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation. PLoS Path 7, e1002179.
Yeates, G.W., Bongers, T., De Goede, R., Freckman, D., and Georgieva, S. (1993). Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25, 315.
Zhen, Z., Xing, X., Xie, M., Yang, L., Yang, X., Zheng, Y., Chen, Y., Ma, N., Li, Q., and Zhang, K.-Q. (2018). MAP kinase Slt2 orthologs play similar roles in conidiation, trap formation, and pathogenicity in two nematode-trapping fungi. Fungal Genet Biol 116, 42-50.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7260-
dc.description.abstract線蟲捕捉菌會產生由菌絲所特化之捕捉構造捕捉線蟲,線蟲與線蟲捕捉菌在野外中普遍存在,但線蟲捕捉菌與線蟲之間之交互關係卻很少人研究。本研究透過實驗室演化與基因剔除試圖探討線蟲捕捉菌與養分之間的關係與真菌是如何感知線蟲的存在。Mitogen-activated protein kinase (MAPK)訊息傳遞系統在真菌界中高度保守,且有許多研究結果證明在動植物病原真菌與致病性相關。線蟲捕捉菌會透過感知線蟲費洛蒙之訊號而產生陷阱,但其中之分子機制尚未明瞭,為了知道MAPK訊息傳遞系統相關基因是否參與線蟲感知與陷阱的產生,將G蛋白訊息傳遞系統上之β次單元gpb1進行基因剔除後,發現線蟲捕捉菌在加入線蟲及線蟲費洛蒙均不會產生陷阱,而高度保守之費洛蒙感知系統上游的G蛋白偶聯受體ste2的基因剔除株所產生的陷阱數量與野生型並沒有差別,顯示線蟲捕捉菌中有不同的G蛋白偶聯受體與線蟲的感知相關。另外,Cell wall integrity (CWI) MAPK訊息傳遞系統上的bck1基因剔除株在生長、產孢與產陷阱上均有缺陷。營養缺乏如缺氮被認為是推進線蟲捕捉菌演化的動力之一,為了要對線蟲捕捉菌捕捉能力的演化有更多的了解,將線蟲捕捉菌培養在富含營養、缺乏營養、缺乏營養但給與線蟲等三種環境下,想知道線蟲捕捉菌是否會因環境中富含營養而喪失捕捉線蟲之能力。在富含營養環境下,一株獨立演化株出現不同於親代的表現型,該突變株可以產生更多的氣生菌絲與能被模式線蟲Caenorabditis elegans誘導出更多的陷阱,這說明了在營養豐富的環境下,線蟲捕捉菌的捕捉能力是具有可塑性的。綜合以上的研究結果顯示營養豐富的環境與兩個高度保守之MAPK訊息傳遞系統會影響線蟲捕捉菌感知線蟲與產生陷阱的能力。zh_TW
dc.description.abstractNematode-trapping fungi develop trapping structures to capture and kill nematodes in response to nematode signals. To this day, the molecular mechanisms and evolutionary origin of nematode-sensing and trap formation in nematode-trapping fungi remain poorly understood. Mitogen-activated protein kinases (MAPKs) are highly conserved in the fungal kingdom and have been shown to be required for pathogenesis in various plant and animal pathogenic fungi. We thus hypothesize that MAPK signaling pathways might be essential for sensing the nematode-associated signals in Arthrobotrys oligospora. To investigate the function of the MAPK genes, we generated loss-of-function mutants for components in the evolutionary-conserved MAPK-mediated pheromone response pathway and cell wall integrity pathway through homologous recombination. Deletion of the G protein β subunit gpb1 of the pheromone response pathway abolished trap formation upon Caenorhabditis elegans nematode and ascarosides, which are nematode pheromones known to trigger trap morphogenesis in nematode-trapping fungi, induction. Intriguingly, an A. oligospora strain lacking ste2, G-protein coupled receptor (GPCR) that in other fungi participates in pheromone sensing, showed identical sensitivity towards C. elegans. This observation suggested multiple GPCRs in A. oligospora are likely involved in sensing nematodes. In addition, bck1 mutant of the other conserved cell wall integrity MAPK pathway resulted in severe defects in growth, conidiation, and trap formation. Nutrient deprivation, such as nitrogen limitation, has long been hypothesized as the selection force that drives the evolution of nematophagous fungi. In order to gain insights into the evolutionary trajectory of nematode-trapping ability in fungi, the model nematode-trapping fungus A. oligospora was experimentally evolved in three conditions with differences in nutrient content: rich medium, low-nutrient medium, and low-nutrient medium supplemented with C. elegans nematodes. Laboratory evolution under rich medium resulted in one independent evolved line that exhibited different amounts of aerial hyphae and trap formation compared to the ancestral strain. This evolved line formed more traps when exposed to C. elegans and ascarosides. These results suggested that prey-sensing is a plastic trait when evolving under nutrient-rich laboratory conditions. In summary, we demonstrated that the environmental nutritional status and two evolutionary-conserved MAPK signaling pathways play essential roles during nematode-sensing and trap morphogenesis in A. oligospora.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:42Z (GMT). No. of bitstreams: 1
ntu-108-R06b48002-1.pdf: 4348280 bytes, checksum: 6835e28524ec747300644537f0fa034d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書……………………………………..……………… i
致謝……………………………………………………..………………. ii
英文摘要………………………………………………..……………… iii
中文摘要……………………………………………………..…………. v
Introduction ................................................................................................... 1
Material and Method ..................................................................................... 5
Strain, media, and culture conditions....................................................5
Trap number quantification...................................................................5
Preparation of protoplast .......................................................................5
Transformation......................................................................................6
Construction of gpb1 knockout cassette ...............................................6
Confirmation of gene knockout ............................................................7
Reconstitution of Gpb1 .........................................................................7
Experimental evolution protocol...........................................................7
Spore morphology observation .............................................................8
Mycelium growth characterization .......................................................8
Genomic DNA extraction .....................................................................8
Remapping of evolved line ...................................................................9
Reconstitution and overexpression of mutated EYR41_009099 in
TWF154...............................................................................................10
Results ......................................................................................................... 11
Identification of homolog genes in A. oligospora TWF154...............11
Deletion of A. oligospora gpb1 gene abolished trap formation..........11
Deletion of A. oligospora GPCR ste2 and ste3 didn’t affect trap
morphogenesis.....................................................................................12
Deletion of A. oligospora CWI MAPKKK bck1 results in severe
growth defect.......................................................................................12
One evolved line in PDA can form more aerial hyphae .....................12
Identifying mutations associated with enhanced trap morphogenesis 13
Mutated EYR41_009099 involved in hyphae production ..................14
Discussion ................................................................................................... 15
Mitogen-activated protein kinase (MAPK) pathways play a role
during trap morphogenesis ..................................................................15
Experimental evolution reveals the plasticity of prey-sensing ...........17
Reference..................................................................................................... 20
dc.language.isoen
dc.title線蟲捕捉菌中高保守性但具可塑性之獵物感受訊息傳遞系統zh_TW
dc.titleHighly Conserved Yet Plastic Signaling Pathways in Prey Sensing by the Nematode-trapping Fungus Arthrobotrys oligosporaen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂俊毅,王廷方,王忠信
dc.subject.keyword線蟲捕捉菌,Arthrobotrys oligospora,G蛋白訊息傳遞系統,實驗室演化,分子演化,獵物與獵食者間之交互作用,zh_TW
dc.subject.keywordNematode-trapping fungi,Arthrobotrys oligospora,G-protein signaling pathway,Experimental evolution,molecular evolution,Prey-predator interaction,en
dc.relation.page37
dc.identifier.doi10.6342/NTU201902152
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf4.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved