請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎 | |
| dc.contributor.author | Chih-Hsiu Zeng | en |
| dc.contributor.author | 曾智修 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:40:42Z | - |
| dc.date.available | 2021-08-07 | |
| dc.date.available | 2021-05-19T17:40:42Z | - |
| dc.date.copyright | 2019-08-07 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-02 | |
| dc.identifier.citation | [1] 3GPP, 'Study on scenarios and requirements for next generation access technologies,' 3GPP, Sophia Antipolis, France, Tech. Rep. 38.913, v14.2, 2017.
[2] H. Shariatmadari, S. Iraji, R. Jantti, P. Popovski, Z. Li, and M. A. Uusitalo, 'Fifth-generation control channel design: Achieving ultrareliable low-latency communications,' IEEE Veh. Technol. Mag., vol. 13, no. 2, pp. 84-93, Jun. 2018. [3] G. Pocovi, H. Shariatmadari, G. Berardinelli, K. Pedersen, J. Steiner, and Z. Li, 'Achieving ultra-reliable low-latency communications: Challenges and envisioned system enhancements,' IEEE Netw., vol. 32, no. 2, pp. 8-15, Mar./Apr. 2018. [4] M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, 'Business case and technology analysis for 5G low latency applications,' IEEE Access, vol. 5, pp. 5917-5935, May 2017. [5] H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana, W. Bao, Y. Li, and B. Vucetic, 'Ultra-reliable low latency cellular networks: Use cases, challenges and approaches,' IEEE Commun. Mag., vol. 56, no. 12, pp. 119-125, Dec. 2018. [6] G. P. Fettweis, 'The tactile Internet: applications and challenges,' IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 64-70, Mar. 2014. [7] D.-J. Deng, S.-Y. Lien, C.-C. Lin, S.-C. Hung, and W.-B. Chen, 'Latency control in software-de ned mobile-edge vehicular networking,' IEEE Commun. Mag., vol. 55, no. 8, pp. 87-93, Aug. 2017. [8] S.-Y. Lien, S.-C. Hung, K.-C. Chen, and Y.-C. Liang, 'Ultra-low latency ubiquitous connections in heterogeneous cloud radio access networks,' IEEE Wireless Commun., vol. 22, no. 3, pp. 22-31, Jun. 2015. [9] S.-C. Hung, H. Hsu, S.-M. Cheng, Q. Cui, and K.-C. Chen, 'Delay guaranteed network association for mobile machines in heterogeneous cloud radio access networks,' IEEE Trans. Mobile Comput., vol. 17, no. 12, pp. 2744-2760, Dec. 2018. [10] K.-C. Chen, T. Zhang, R. D. Gitlin, and G. Fettweis, 'Ultra-low latency mobile networking,' IEEE Netw., vol. 33, no. 2, Mar./Apr. 2019. [11] G. Berardinelli, N. H. Mahmood, R. Abreu, T. Jacobsen, K. Pedersen, I. Z. Kovacs, and P. Mogensen, 'Reliability analysis of uplink grant-free transmission over shared resources,' IEEE Access, vol. 6, pp. 23602-23611, May 2018. [12] Y. Du, B. Dong, W. Zhu, P. Gao, Z. Chen, X. Wang, and J. Fang, 'Joint channel estimation and multiuser detection for uplink grant-free NOMA,' IEEE Wireless Commun. Lett., vol. 7, no. 4, pp. 682-685, Aug. 2018. [13] C.-Y. Lin, K.-C. Chen, D. Wickramasuriya, S.-Y. Lien, and R. D. Gitlin, Antic- ipatory mobility management by big data analytics for ultra-low latency mobile networking,' in Proc. IEEE Int. Conf. Commun., Kansas City, MO., USA, 2018, pp. 1-7. [14] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, 'Ultra-reliable and low-latency communications in 5G downlink: Physical layer aspects,' IEEE Wireless Commun., vol. 25, no. 3, pp. 124-130, Jun. 2018. [15] Y. Polyanskiy, H. V. Poor, and S. Verdu, 'Channel coding rate in the fi nite blocklength regime,' IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307-2359, May 2010. [16] G. Durisi, T. Koch, and P. Popovski, 'Toward massive, ultrareliable, and low-latency wireless communication with short packets,' in Proc. IEEE, vol. 104, no. 9, pp. 1711-1726, Sep. 2016. [17] C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan, 'Joint blocklength and location optimization for URLLC-enabled UAV relay systems,' IEEE Commun. Lett., vol. 23, no. 3, pp. 498-501, March, 2019. [18] M. Shirvanimoghaddam et al., 'Short block-length codes for ultra-reliable low latency communications,' IEEE Commun. Mag., vol. 57, no. 2, Feb. 2019. [19] M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian, and V. Vukadinovic, 'Channel coding for ultra-reliable low-latency communication in 5G systems,' in Proc. IEEE VTC Fall, Montreal, QC., Canada, 2016, pp. 1-5. [20] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, 'Resource slicing in virtual wireless networks: A survey,' IEEE Trans. Netw. Service Manage., vol. 13, no. 3, pp. 462-476, Sep. 2016. [21] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, '5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view,' IEEE Access, vol. 6, pp. 55765-55779, Oct. 2018. [22] C. She, C. Yang, and T. Q. S. Quek, 'Radio resource management for ultra-reliable and low-latency communications,' IEEE Commun. Mag., vol. 55, no. 6, pp. 72-78, Jun. 2017. [23] M. Peng, C. Wang, J. Li, H. Xiang, and V. Lau, 'Recent advances in underlay heterogeneous networks: Interference control, resource allocation, and self-organization,' IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 700-729 Second Quarter 2015. [24] K.Wang, H. Li, F. R. Yu, W.Wei, and L. Suo, 'Interference alignment in virtualized heterogeneous cellular networks with imperfect channel state information,' IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1519-1532, Feb. 2017. [25] J. Kim, H.-W. Lee, and S. Chong, 'Virtual cell beamforming in cooperative networks,' IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1126-1138, Jun. 2014. [26] J. Wang and L. Dai, 'Downlink rate analysis for virtual-cell based large-scale distributed antenna systems,' IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 1998-2011, Mar. 2016. [27] X. Jiang, B. Zheng, W.-P. Zhu, L. Wang, and Y. Zou, 'Large system analysis of heterogeneous cellular networks with interference alignment,' IEEE Access, vol. 6, pp. 8148-8160, Mar. 2018. [28] S. Verdu, Multiuser Detection, Cambridge, U.K.: Cambridge University. Press, 1998. [29] J. Lee, D. Toumpakaris, and W. Yu, 'Interference mitigation via joint detection,' IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1172-1184, Jun. 2011. [30] H. Schulze and C. Lueders Theory and Applications of OFDM and CDMA Wideband Wireless Communications, England: John Wiley & Sons, 2005. [31] Y. Jiang, M. K. Varanasi, and J. Li, 'Performance analysis of ZF and MMSE equalizers for MIMO systems: An in-depth study of the high SNR regime,' IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 2008-2026, Apr. 2011. [32] J. R. Hampton, Introduction to MIMO Communications, New York: Cambridge University Press, 2014. [33] Z. Bai, B. Badic, S. Iwelski, T. Scholand, R. Balraj, G. Bruck, and P. Jung, 'On the equivalence of MMSE and IRC receiver in MU-MIMO systems,' IEEE Commun. Lett., vol. 15, no. 12, pp. 1288-1290, Dec. 2011. [34] B. Flury, A First Course in Multivariate Statistics, New York: Spring Verlag, 1997. [35] C. Schlegel, S. Roy, P. D. Alexander, and Z.-J. Xiang, 'Multiuser projection receivers,' IEEE J. Sel. Areas Commun., vol. 14, no. 8, pp. 1610-1618, Oct. 1996. [36] S. Bahng, S. Shin, and Y.-O. Park, 'ML approaching MIMO detection based on orthogonal projection,' IEEE Commun. Lett., vol. 11, no. 6, pp. 474-476, June 2007. [37] S. Verd u, 'Minimum probability of error for asynchronous Gaussian multiple-access channels,' IEEE Trans. Inf. Theory, vol. 32, no. 1, pp. 85-96, Jan. 1986. [38] C.-H. Zeng and K.-C. Cheng, 'Downlink multiuser detection in the virtual cell-based ultra-low latency vehicular networks,' IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4651-4666, May 2019. [39] C.-H. Zeng and K.-C. Cheng, 'Downlink multiuser detection of ultra-low latency virtual-cell vehicular networks,' in Proc. IEEE Veh. Technol. Conf. Fall, Chicago, IL, USA, 2018, pp. 1-5. [40] C.-H. Zeng and K.-C. Cheng, 'Low complexity multiuser detection in the downlink of ultra-low latency virtual-cell based vehicular networks,' in Proc. IEEE Veh. Technol. Conf. Fall, Chicago, IL, USA, 2018, pp. 1-5. [41] J. H. Winters, J. Salz, and R. D. Gitlin, 'The impact of antenna diversity on the capacity of wireless communication systems,' IEEE Trans. Commun., vol. 42, no. 2/3/4, pp. 1740-1751, Feb/Mar./Apr. 1994. [42] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Communications with MATLAB, Singapore: John Wiley & Sons (Asia) Pte Ltd, 2010. [43] T.-D. Chiueh, P.-Y. Tsai, and I.-W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, Singapore: John Wiley & Sons (Asia) Pte Ltd, 2012. [44] J. Sachs, G. Wikstr om, T. Dudda, R. Baldemair, and K. Kittichokechai, '5G radio network design for ultra-reliable low-latency communication,' IEEE Netw., vol. 32, no. 2, pp. 24-31, Mar./Apr. 2018. [45] V. Kotzsch, W. Rave, and G. Fettweis, Interference cancellation and suppression in asynchronous cooperating base station systems,' in Proc. Int. ITG Workshop Smart Antenna, Dresden, Germany, Mar. 2012, pp. 78-85. [46] M. Haenggi, Stochastic Geometry for Wireless Networks, New York: Cambridge University Press, 2013. [47] Y. Feng, W. Zhang, Y. Ge, and H. Lin, 'Frequency synchronization in distributed antenna systems: Pairing based multi-CFO estimation, theoretical analysis, and optimal pairing scheme,' IEEE Trans. Commun., vol. 67, no. 4, Apr. 2019. [48] S. Kumar, S. Majhi, and C. Yuen., 'Multi-user CFO estimation for SC-FDMA system over frequency selective fading channels,' IEEE Access, vol. 6, pp. 43146-43156, Aug. 2018. [49] Y.-R. Tsai et al., 'Simultaneous multiple carrier frequency offsets estimation for coordinated multi-point transmission in OFDM system,' IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4558-4568, Sep. 2013. [50] H. C. Nguyen, E. De Carvalho, and R. Prasad, 'Multi-user interference cancellation schemes for carrier frequency offset compensation in uplink OFDMA,' IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1164-1171, Mar. 2014. [51] A. Santra and K. V. S. Hari, 'A novel subspace based method for compensation of multiple CFOs in uplink MIMO OFDM systems,' IEEE Commun. Lett., vol. 21, no. 9, pp. 1993-1996, Sep. 2017. [52] T. Wang and S. C. Liew, 'Frequency-asynchronous multiuser joint channel-parameter estimation CFO compensation and channel decoding,' IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9732-9746, Dec. 2016. [53] A. Farhang, N. Marchetti, L. E. Doyle, and B. F.-Boroujeny, 'Low complexity CFO compensation in uplink OFDMA systems with receiver windowing,' IEEE Trans. Signal Process., vol. 63, no. 10, pp. 2546-2558, May 2015. [54] Y. Ge , W. Zhang , F. Gao , and G. Y. Li, 'Frequency synchronization for uplink massive MIMO with adaptive MUI suppression in angle domain,' IEEE Trans. Signal Process., vol. 67, no. 8, pp. 2143-2158, Apr. 2019. [55] Z. Cao, U. Tureli, Y.-D. Yao, and P. Honan, 'Frequency synchronization for generalized OFDMA uplink,' in Proc. IEEE Globecom, vol. 2, Dallas, TX., USA, Nov. 2004, pp. 1071-1075. [56] Y.-S. Yang et al., 'A low-complexity transceiver structure with multiple CFOs compensation for OFDM-based coordinated multi-point systems,' IEEE Trans. Commun., vol. 63, no. 7, pp. 2658-2670, Jul. 2015. [57] V. Kotzsch, J. Holfeld, and G. Fettweis, 'Joint detection and CFO compensation in asynchronous multi-user MIMO OFDM systems,' in Proc. IEEE Veh. Technol. Conf. Spring, Barcelona, Spain, 2009, pp.1-5. [58] W. Zhang, F. Gao, Q. Yin, and H. M. Wang, 'Alamouti coding scheme for AF relaying with Doppler shifts,' IEEE Trans. Veh. Technol., vol. 62, no. 3, pp. 1241-1250, Mar. 2013. [59] Y. Yao, and X. Dong, 'Multiple CFO mitigation in amplify-and-forward cooperative OFDM transmission,' IEEE Trans. Commun., vol. 60, no. 12, pp. 3844-3854, Dec. 2012. [60] Q. Huang, M. Ghogho, D. Ma, and J. Wei, 'Low-complexity data-detection algorithm in cooperative SFBC-OFDM systems with multiple frequency offsets, 'IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4614-4620, Nov. 2010. [61] F. Tian, X.-G. Xia, and P. C. Ching, 'Signal detection in a space-frequency coded cooperative communication system with multiple carrier frequency offsets by exploiting speci c properties of the code structure,' IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3396-3409, Sep. 2009. [62] Y. Zhao et al., Efficient detection of spatial modulation OFDM systems with multiple carrier frequency offsets, IEEE Commun. Lett., vol. 21, no. 2, pp. 426-429, Feb. 2017. [63] Y. Zhao et al., 'MMSE-based detector for spatial modulation OFDM systems with multiple CFOs,' in Proc. 10th Int. Conf. Wireless Commun. Signal Process., Hangzhou, China, Dec. 2018, pp. 1-6. [64] H. -W. Wang, D. W. Lin, and T.-H. Sang, 'OFDM signal detection in doubly selective channels with blockwise whitening of residual intercarrier interference and noise,' IEEE J. Sel. Areas Commun., vol. 30, no. 4, pp. 684-694, May 2012. [65] H. Jang, S. Nooshabadi, K. Kim, and H.-N. Lee 'Circular sphere decoding: A low complexity detection for MIMO systems with general two-dimensional signal constellations,' IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2085-2098, Mar. 2017. [66] E. Viterbo and J. Boutros, 'A universal lattice code decoder for fading channels,' IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639-1642, Jul. 1999. [67] C.-H. Zeng and K.-C. Chen, 'Pseudo whitening of itercarrier interference in the asynchronous URLLC downlink,' in Proc. IEEE Int. Conf. Commun., Shanghai, China, May, 2019, pp. 1-6. [68] S. M. Alamouti, 'A simple transmit diversity technique for wireless communications,' IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998. [69] R. Rajashekar and K. V. S. Hari, 'Modulation diversity for spatial modulation using complex interleaved orthogonal design,' in Proc. IEEE Region 10 Conf. TENCON, Cebu, Philippines, Nov. 2012, pp. 1-6. [70] A. M. Tulino and S. Verdu, Random Matrix Theory and Wireless Communications, Now Publisher, 2004. [71] B. Hassibi, 'A fast square-root implementation for BLAST,' in Proc. 34th Asilomar Conf. Signals, Syst. Comput., Paci c Grove, CA., USA, Nov. 2000, pp. 1255-1259. [72] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, 'Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,' IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721-742, 2nd Quart. 2016. [73] J. Jalden and B. Ottersten, 'On the complexity of sphere decoding in digital communications,' IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1474-1484, 2005. [74] M. Z. A. Khan and B. S. Rajan, 'Single-symbol maximum likelihood decodable linear STBCs,' IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2062-2091, May 2006. [75] F. Oggier and B. Hassibi, 'An algebraic coding scheme for wireless relay networks with multiple-antenna nodes, 'IEEE Trans. Signal Process., vol. 56, no. 7, July 2008. [76] P. C. Sofotasios and S. Freear, `Novel expressions for the one and two dimensional Gaussian Q-functions,' in Proc. IEEE ICWITS, Aug./Sep. 2010, Hawaii, USA. [77] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, 'Machine learning paradigms for next-generation wireless networks,' IEEE Wireless Commun., vol. 24, no. 2, pp. 98-105, Apr. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7259 | - |
| dc.description.abstract | To achieve ultra-low latency mobile networking, recent efforts to integrate virtual cell with open-loop communications and proactive network association suggest the facilitation of new technological paradigm, but the interference from different co-locating virtual cells is hard to handle. Open-loop transmissions make beam-forming/interference alignment (IA) infeasible due to the need of channel state information (CSI) feedback. Multiuser detection (MUD) is therefore employed to address downlink interference.
We note that the bit error rate (BER) of maximum-likelihood MUD (ML-MUD) is sensitive to the modulation of interference. As the interferer uses low-order modulation, the BER of desired signal can approach the ideal case without interference. But if the interferer adopts high-order modulation, the resultant BER is signi ficantly degraded. Our study shows that such modulation sensitivity can be eased by multi-antenna technique. We also propose two methods to reduce the notorious computational complexity of MUD, particularly involving higher-order modulations. The first scheme is termed reduced-computation ML-MUD (R-ML-MUD) that exploits the characteristic of downlink to shrink the ML solution space, consequently leading to lower detection complexity. The second scheme is a new projection receiver, called generalized linear minimum mean square error equalizer (GLMMSE) resulting in notable signal-to-noise ratio (SNR) gain over the conventional projection method. Nevertheless, losing perfect synchronization creates difficulty in tackling multiple access interference (MAI). Multiple carrier frequency offsets (CFOs) due to different oscillators at different access points (APs) incur serious inter-carrier interference (ICI) to complicate downlink MAI. Asynchronous MUD with ICI-Whitening was shown leading to satisfactory performance, but the whitening scheme needs the covariance matrix of ICI that is practically hard to obtain for downlink receivers. We therefore develop a two-stage ICI suppression method to resolve this challenge. The first-stage processing is Pseudo-ICI-Whitening (P-ICI-W), which does not rely on the estimation of ICI covariance and is suitable for asynchronous downlink. In terms of post-processing signal-to-interference-plus-noise ratio (SINR) and BER, our proposed mechanism can approach ICI-Whitening. The second-stage processing is based on GLMMSE to further cancel some ICI terms. We also apply our scheme to space-time-block-coded signals, considering Alamouti coding and Complex Interleaved Orthogonal Design. Finally, we assume that APs can coordinately allocate radio resource for the served vehicles and enforce frequency-domain cooperative data encoding. Our analysis shows that CFOs will still noticeably worsen the BER, even if ICI is well-addressed. Such problem can be resolved by indexing APs according to the order of CFOs. Furthermore, we propose a robust encoding scheme that achieves satisfactory performance and allows random AP indexing, thus CFO feedback can be avoided. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:42Z (GMT). No. of bitstreams: 1 ntu-108-D03942018-1.pdf: 2465056 bytes, checksum: 30a168edbba698483235806ee626a5b3 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract in Chinese ii Abstract iv Contents viii List of Figures xvi List of Tables xvii 1 Introduction 1 1.1 Ultra-Low Latency Vehicular Networking 1 1.2 Signal Detection Schemes 4 1.2.1 Single-User Detection 5 1.2.2 Multiuser Detection 6 1.2.3 ZF/LMMSE Detection 8 1.2.4 Projection Receiver 10 1.3 Joint Detection to Address Interference in the Virtual Cell: Feasibility and Possible Issues 11 1.4 OFDMA-Based Virtual Cell Networks 13 1.4.1 Signal Model in Perfect Synchronization 14 1.4.2 CFO-Induced ICI 16 1.4.3 Challenges in Asynchronous Downlink 18 1.5 Organization and Contributions of Dissertation 21 2 Modulation Sensitivity in Multiuser Detection 25 2.1 Signal Model and Preliminaries 26 2.2 The Impact of Modulation of Interference on BER 28 2.3 Comparison with LMMSE 33 2.4 Simulation Results 34 2.5 Summary 37 3 Low-Complexity Multiuser Detection 39 3.1 Comparison between SUD and ML-MUD 39 3.2 Reduced-Computation ML-MUD 43 3.3 Generalized LMMSE 49 3.4 Case Study by Simulations 55 3.5 Summary 59 4 Two-Stage Inter-Carrier Interference Suppression 63 4.1 Asynchronous Modelling 64 4.1.1 Probabilistic Analysis of TDOA-Induced ISI 65 4.1.2 Signal Model for Multi-CFO Issue 68 4.2 First-Stage Processing 71 4.2.1 Pseudo Whitening 72 4.2.2 Joint Detection 78 4.3 Second-Stage Processing 81 4.3.1 ICI Suppression by Projection Method 81 4.3.2 Compare Different ICI-Suppression Alternatives by Simulations 82 4.4 Generalization to the Case with STBC 90 4.4.1 Complex Interleaved Orthogonal Design 90 4.4.2 Alamouti Coding 92 4.4.3 Performance Comparison 94 4.5 Summary 98 5 Cooperative Coding in Frequency Domain 99 5.1 Cooperative Encoding and MRC 100 5.2 Benchmark Analysis: Asynchronous MRC 106 5.3 AP Indexing Principle 111 5.4 Robust Cooperative Encoding Against CFO 116 5.5 Summary 118 6 Conclusion 119 6.1 Dissertation Summary 119 6.2 Future Work 120 Bibliography 123 Appendix A Proof of (2.23) 133 Appendix B Proof of (2.32) 135 Appendix C Proof of (4.66) 137 Appendix D Proof of (5.26) 139 Appendix E Proof of (5.29) 141 | |
| dc.language.iso | en | |
| dc.title | 低延遲虛擬細胞車用通信網路下行鏈路多用戶檢測技術之研究 | zh_TW |
| dc.title | Downlink Multiuser Detection in the Ultra-Low Latency Virtual Cell-Based Vehicular Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 柳德政,李志鵬,林嘉慶,蘇育德,闕志達 | |
| dc.subject.keyword | 多用戶檢測,干擾抑制,開路通訊,車用網路,虛擬細胞,超可靠和低延遲通信,第五代移動通信技術, | zh_TW |
| dc.subject.keyword | Multiuser detection,interference suppression,open-loop communications,vehicular networks,virtual cell,uRLLC,5G, | en |
| dc.relation.page | 142 | |
| dc.identifier.doi | 10.6342/NTU201902343 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 2.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
