請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72587完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林逸彬(Yi-Pin Lin) | |
| dc.contributor.author | Kuan-Po Chen | en |
| dc.contributor.author | 陳冠博 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:01:25Z | - |
| dc.date.available | 2024-08-12 | |
| dc.date.copyright | 2019-08-12 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-31 | |
| dc.identifier.citation | Acero, J.L., Stemmler, K. and von Gunten, U. (2000) Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment. Environ. Sci. Technol. 34(4), 591-597.
Ahn, Y., Oh, H., Yoon, Y., Park, W.K., Yang, W.S. and Kang, J.W. (2017) Effect of graphene oxidation degree on the catalytic activity of graphene for ozone catalysis. J. Environ. Chem. Eng. 5(4), 3882-3894. Alazmi, A., El Tall, O., Rasul, S., Hedhili, M.N., Patole, S.P. and Costa, P.M. (2016) A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale 8(41), 17782-17787. APHA, AWWA and WEF (2012) Standard methods for the examination of water and wastewater, APHA, Washinton, D.C. Apul, O.G., Wang, Q., Zhou, Y. and Karanfil, T. (2013) Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Res. 47(4), 1648-1654. Bader, H. and Hoigné, J. (1981) Determination of ozone in water by the indigo method. Water Res. 15(4), 449-456. Baskoro, F., Wong, C.B., Kumar, S.R., Chang, C.W., Chen, C.H., Chen, D.W. and Lue, S.J. (2018) Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions. J. Membr. Sci. 554, 253-263. Beless, B., Rifai, H.S. and Rodrigues, D.F. (2014) Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution. Environ. Sci. Technol. 48(17), 10372-10379. Blair, B., Nikolaus, A., Hedman, C., Klaper, R. and Grundl, T. (2015) Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 134, 395-401. Boretti, A., Al-Zubaidy, S., Vaclavikova, M., Al-Abri, M., Castelletto, S. and Mikhalovsky, S. (2018) Outlook for graphene-based desalination membranes. Npj Clean Water 1. Bradder, P., Ling, S.K., Wang, S.B. and Liu, S.M. (2011) Dye adsorption on layered graphite oxide. J. Chem. Eng. Data 56(1), 138-141. Bragg, W.H. and Bragg, W.L. (1913) The reflection of X-rays by crystals. Proc. R. Soc. A 88, 428-438. Buffle, M.O., Schumacher, J., Salhi, E., Jekel, M. and von Gunten, U. (2006) Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: Application to disinfection and pharmaceutical oxidation. Water Res. 40(9), 1884-1894. Buffle, M.O. and von Gunten, U. (2006) Phenols and amine induced HO generation during the initial phase of natural water ozonation. Environ. Sci. Technol. 40(9), 3057-3063. Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17(2), 513-886. Cai, M.J. and Lin, Y.P. (2016) Effects of effluent organic matter (EfOM) on the removal of emerging contaminants by ozonation. Chemosphere 151, 332-338. Cai, M.Q., Wang, R., Feng, L. and Zhang, L.Q. (2015) Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China. Environ. Sci. Pollut. Res. 22(3), 1854-1867. Carballa, M., Omil, F., Lema, J.M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M. and Ternes, T. (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 38(12), 2918-2926. Chen, J., Zhang, Y., Zhang, M., Yao, B., Li, Y., Huang, L., Li, C. and Shi, G. (2016) Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem. Sci 7(3), 1874-1881. Chen, Y., Xie, B., Ren, Y., Yu, M., Qu, Y., Xie, T., Zhang, Y. and Wu, Y. (2014) Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups. Nanoscale Res. Lett. 9(1), 646. Chowdhury, D.R., Singh, C. and Paul, A. (2014) Role of graphite precursor and sodium nitrate in graphite oxide synthesis. RSC Adv. 4(29), 15138-15145. Clarke, J.T. (1964) Surface area measurement of graphite using the gamma-radiation of Kr85. J. Phys. Chem. 68(4), 884-&. Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., Hammes, F., Burgmann, H. and von Gunten, U. (2016) Inactivation of antibiotic resistant bacteria and resistance genes by ozone: From laboratory experiments to full-scale wastewater treatment. Environ. Sci. Technol. 50(21), 11862-11871. de Jesus Gaffney, V., Almeida, C.M., Rodrigues, A., Ferreira, E., Benoliel, M.J. and Cardoso, V.V. (2015) Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 72, 199-208. Dimiev, A.M., Kosynkin, D.V., Alemany, L.B., Chaguine, P. and Tour, J.M. (2012) Pristine graphite oxide. J. Am. Chem. Soc. 134(5), 2815-2822. Dimiev, A.M. and Tour, J.M. (2014) Mechanism of graphene oxide formation. ACS Nano 8(3), 3060-3068. Dodd, M.C., Buffle, M.O. and von Gunten, U. (2006) Oxidation of antibacterial molecules by aqueous ozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environ. Sci. Technol. 40(6), 1969-1977. Duan, X., Ao, Z., Sun, H., Indrawirawan, S., Wang, Y., Kang, J., Liang, F., Zhu, Z.H. and Wang, S. (2015) Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces 7(7), 4169-4178. Duan, X., Sun, H. and Wang, S. (2018) Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 51(3), 678-687. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S. and Casiraghi, C. (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12(8), 3925-3930. Eigler, S., Dotzer, C. and Hirsch, A. (2012) Visualization of defect densities in reduced graphene oxide. Carbon 50(10), 3666-3673. Elovitz, M. and von Gunten, U. (1999) Hydroxyl radical/ozone ratios during ozonation process I. The Rct Concept. Ozone: Sci. Eng. 21, 239-260. Ernst, M., Lurot, F. and Schrotter, J.C. (2004) Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Appl. Catal., B 47(1), 15-25. Faria, P.C.C., Orfao, J.J.M. and Pereira, M.F.R. (2008) Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Appl. Catal., B 83(1-2), 150-159. Geim, A.K. and Novoselov, K.S. (2007) The rise of graphene. Nat. Mater. 6, 183. Goncalves, A.G., Orfao, J.J. and Pereira, M.F. (2012) Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways. J. Hazard Mater. 239-240, 167-174. Gounden, A.N., Singh, S. and Jonnalagadda, S.B. (2018) Simultaneous removal of 2,4,6-tribromophenol from water and bromate ion minimization by ozonation. J. Hazard Mater. 357, 415-423. Guo, Y., Wang, H., Wang, B., Deng, S., Huang, J., Yu, G. and Wang, Y. (2018) Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. Water Res. 142, 383-395. Gupta, B., Kumar, N., Panda, K., Kanan, V., Joshi, S. and Visoly-Fisher, I. (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7, 45030. Homaeigohar, S. and Elbahri, M. (2017) Graphene membranes for water desalination. NPG Asia Mater. 9, e427. Huber, M.M., Canonica, S., Park, G.Y. and von Gunten, U. (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 37(5), 1016-1024. Hummers, W.S. and Offeman, R.E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339-1339. Jeong, H.K., Lee, Y.P., Lahaye, R.J., Park, M.H., An, K.H., Kim, I.J., Yang, C.W., Park, C.Y., Ruoff, R.S. and Lee, Y.H. (2008) Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130(4), 1362-1366. Jothinathan, L. and Hu, J. (2018) Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen. Water Res. 134, 63-73. Kang, D. and Shin, H.S. (2012) Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett. 13(1), 39-43. Kasprzyk-Hordern, B., Dinsdale, R.M. and Guwy, A.J. (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 43(2), 363-380. Khan, U. and Nicell, J. (2015) Human health relevance of pharmaceutically active compounds in drinking water. AAPS J. 17(3), 558-585. Kim, D.I., Fortner, J.D. and Kim, J.H. (2007) A multi-channel stopped-flow reactor for measuring ozone decay rate: Instrument development and application. Ozone: Sci. Eng. 29(2), 121-129. King, A.A., Davies, B.R., Noorbehesht, N., Newman, P., Church, T.L., Harris, A.T., Razal, J.M. and Minett, A.I. (2016) A new raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 19491. Konkena, B. and Vasudevan, S. (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 3(7), 867-872. Kotlarz, N., Rockey, N., Olson, T.M., Haig, S.J., Sanford, L., LiPuma, J.J. and Raskin, L. (2018) Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environ. Sci. Technol. 52(5), 2618-2628. Krishnamoorthy, K., Veerapandian, M., Yun, K. and Kim, S.J. (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38-49. Kwon, M., Kye, H., Jung, Y., Yoon, Y. and Kang, J. (2017) Performance characterization and kinetic modeling of ozonation using a new method: ROH,O3 concept. Water Res. 122, 172-182. Lee, M., Zimmermann, S.G., Arey, J.S., Fenner, K. and von Gunten, U. (2015) Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: The role of delocalized and localized molecular orbitals. Environ. Sci. Technol. 49(16), 9925-9935. Lee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., Trenholm, R.A., Wert, E.C., Snyder, S.A. and von Gunten, U. (2013) Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: Use of kinetic and water specific information. Environ. Sci. Technol. 47(11), 5872-5881. Li, D., Muller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008) Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101-105. Li, F., Jiang, X., Zhao, J.J. and Zhang, S.B. (2015) Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 16, 488-515. Li, L., Zhou, G.M., Weng, Z., Shan, X.Y., Li, F. and Cheng, H.M. (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67, 500-507. Li, Y.H., Du, Q.J., Liu, T.H., Peng, X.J., Wang, J.J., Sun, J.K., Wang, Y.H., Wu, S.L., Wang, Z.H., Xia, Y.Z. and Xia, L.H. (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 91(2), 361-368. Lim, S., McArdell, C.S. and von Gunten, U. (2019) Reactions of aliphatic amines with ozone: Kinetics and mechanisms. Water Res. 157, 514-528. Liu, F.F., Zhao, J., Wang, S., Du, P. and Xing, B. (2014) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol. 48(22), 13197-13206. Liu, J.N., Chen, Z., Wu, Q.Y., Li, A., Hu, H.Y. and Yang, C. (2016) Ozone/graphene oxide catalytic oxidation: A novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET). Sci. Rep. 6, 31405. Luo, X., Wang, X.R., Bao, S.P., Liu, X.W., Zhang, W.C. and Fang, T. (2016) Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Sci. Rep. 6. Luo, Y.L., Guo, W.S., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S. and Wang, X.C.C. (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473, 619-641. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M. (2010) Improved synthesis of graphene oxide. ACS Nano 4(8), 4806-4814. Mikrajuddin, A. and Khairurrijal, K. (2008) Derivation of scherrer relation using an approach in basic physics course. J. Nanosci. Nanotechnol. 1(1), 28-32. Montes-Navajas, P., Asenjo, N.G., Santamaria, R., Menendez, R., Corma, A. and Garcia, H. (2013) Surface area measurement of graphene oxide in aqueous solutions. Langmuir 29(44), 13443-13448. Mvula, E. and von Sonntag, C. (2003) Ozonolysis of phenols in aqueous solution. Org. Biomol. Chem. 1(10), 1749-1756. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K. and Takada, H. (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 40(17), 3297-3303. Neta, P. and Dorfman, L.M. (1968) Radiation chemistry, ACS, Washinton, D.C. Novacek, M., Jankovsky, O., Luxa, J., Sedmidubsky, D., Pumera, M., Fila, V., Lhotka, M., Klimova, K., Matejkova, S. and Sofer, Z. (2017) Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A 5(6), 2739-2748. Oulton, R., Haase, J.P., Kaalberg, S., Redmond, C.T., Nalbandian, M.J. and Cwiertny, D.M. (2015) Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: Performance optimization and demonstration of a reactive CNT filter. Environ. Sci. Technol. 49(6), 3687-3697. Park, Y.G. (2002) Effect of ozonation for reducing membrane-fouling in the UF membrane. Desalination 147(1-3), 43-48. Paschke, A., Neitzel, P.L., Walther, W. and Schuurmann, G. (2004) Octanol/water partition coefficient of selected herbicides: Determination using shake-flask method and reversed-phase high-performance liquid chromatography. J. Chem. Eng. Data 49(6), 1639-1642. Patterson, A.L. (1939) The Scherrer formula for x-ray particle size determination. Phys. Rev. 56(10), 978-982. Pavoski, G., Maraschin, T., Fim, F.D., Balzaretti, N.M., Galland, G.B., Moura, C.S. and Basso, N.R.D. (2017) Few layer reduced graphene oxide: Evaluation of the best experimental conditions for easy production. Mater. Res. 20(1), 53-61. Perreault, F., Fonseca de Faria, A. and Elimelech, M. (2015) Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44(16), 5861-5896. Ramimoghadam, D., Bin Hussein, M.Z. and Taufiq-Yap, Y.H. (2013) Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate. Chem. Cent. J. 7. Real, F.J., Benitez, F.J., Acero, J.L., Sagasti, J.J.P. and Casas, F. (2009) Kinetics of the chemical oxidation of the pharmaceuticals primidone, ketoprofen, and diatrizoate in ultrapure and natural waters. Ind. Eng. Chem. Res. 48(7), 3380-3388. Roberts, J., Kumar, A., Du, J., Hepplewhite, C., Ellis, D.J., Christy, A.G. and Beavis, S.G. (2016) Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci. Total Environ. 541, 1625-1637. Sanchez-Polo, M., von Gunten, U. and Rivera-Utrilla, J. (2005) Efficiency of activated carbon to transform ozone into center dot OH radicals: Influence of operational parameters. Water Res. 39(14), 3189-3198. Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U. and Wehrli, B. (2006) The challenge of micropollutants in aquatic systems. Science 313(5790), 1072-1077. Sharma, V.K., McDonald, T.J., Kim, H. and Garg, V.K. (2015) Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv. Colloid. Interface Sci. 225, 229-240. Shen, L., Zhang, L.H., Wang, K., Miao, L.J., Lan, Q.F., Jiang, K.M., Lu, H.M., Li, M., Li, Y., Shen, B. and Zheng, W.G. (2018) Analysis of oxidation degree of graphite oxide and chemical structure of corresponding reduced graphite oxide by selecting different-sized original graphite. RSC Adv. 8(31), 17209-17217. Shin, J., Hidayat, Z.R. and Lee, Y. (2016) Influence of seasonal variation of water temperature and dissolved organic matter on ozone and OH radical reaction kinetics during ozonation of a lake water. Ozone: Sci. Eng. 38(2), 100-114. Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquérol, J. and Siemieniewska., T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603-619. Singh, A.K., Basavaraju, K.C., Sharma, S., Jang, S., Park, C.P. and Kim, D.P. (2014) Eco-efficient preparation of a N-doped graphene equivalent and its application to metal free selective oxidation reaction. Green Chem. 16(6), 3024-3030. Snyder, S.A. (2008) Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone: Sci. Eng. 30(1), 65-69. Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C. and Yoon, Y. (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1-3), 156-181. Song, N., Gao, X.L., Ma, Z., Wang, X.J., Wei, Y. and Gao, C.J. (2018) A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination 437, 59-72. Song, Z., Wang, M., Wang, Z., Wang, Y., Li, R., Zhang, Y., Liu, C., Liu, Y., Xu, B. and Qi, F. (2019a) Insights into heteroatom-doped graphene for catalytic ozonation: Active centers, reactive oxygen species evolution, and catalytic mechanism. Environ. Sci. Technol. 53(9), 5337-5348. Song, Z., Zhang, Y., Liu, C., Xu, B., Qi, F., Yuan, D. and Pu, S. (2019b) Insight into OH and O2− formation in heterogeneous catalytic ozonation by delocalized electrons and surface oxygen-containing functional groups in layered-structure nanocarbons. J. Environ. Chem. Eng. 357, 655-666. Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D. and Lippincott, R.L. (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 377(2-3), 255-272. Staehelin, J. and Hoigné, J. (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19, 1206-1213. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P. and Bieloshapka, I. (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145-154. Stumpf, M., Ternes, T.A., Wilken, R.D., Rodrigues, S.V. and Baumann, W. (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci. Total Environ. 225(1-2), 135-141. Sun, H., Liu, H., Wang, S., Cheng, F. and Liu, Y. (2018) Ceramic membrane fouling by dissolved organic matter generated during on-line chemical cleaning with ozone in MBR. Water Res. 146, 328-336. Sun, H., Liu, S., Zhou, G., Ang, H.M., Tade, M.O. and Wang, S. (2012) Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interfaces 4(10), 5466-5471. Sun, Q., Lv, M., Hu, A., Yang, X.Y. and Yu, C.P. (2014) Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. J. Hazard Mater. 277, 69-75. Tauber, A. and von Sonntag, C. (2000) Products and kinetics of the OH-radical-induced dealkylation of atrazine. Acta Hydrochim. Hydrobiol. 28(1), 15-23. Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.J., Gulde, B.H., Preuss, G., Wilme, U. and Seibert, N.Z. (2002) Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol. 36(17), 3855-3863. Thalmann, B., von Gunten, U. and Kaegi, R. (2018) Ozonation of municipal wastewater effluent containing metal sulfides and metal complexes: Kinetics and mechanisms. Water Res. 134, 170-180. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K.S.W. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9-10), 1051-1069. Van Geluwe, S., Braeken, L. and Van der Bruggen, B. (2011) Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water Res. 45(12), 3551-3570. Venugopal, G., Krishnamoorthy, K., Mohan, R. and Kim, S.J. (2012) An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys 132(1), 29-33. von Sonntag, C. and von Gunten, U. (2012) Chemistry of ozone in water and wastewater treatment: From basic principles to applications, IWA publising, London, UK. Wang, D., Xu, H., Ma, J., Giannakis, S., Lu, X., Chi, H., Song, S. and Qi, J. (2019a) Enhanced mineralization of atrazine by surface induced hydroxyl radicals over light-weight granular mixed-quartz sands with ozone. Water Res. 149, 136-148. Wang, H., Yuan, S., Zhan, J., Wang, Y., Yu, G., Deng, S., Huang, J. and Wang, B. (2015) Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Res. 80, 20-29. Wang, J. and Wang, S. (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manage. 182, 620-640. Wang, S., Zhang, Y., Abidi, N. and Cabrales, L. (2009) Wettability and surface free energy of graphene films. Langmuir 25(18), 11078-11081. Wang, Y., Xie, Y.B., Sun, H.Q., Xiao, J.D., Cao, H.B. and Wang, S.B. (2016) Efficient catalytic ozonation over reduced graphene oxide for p-hydroxylbenzoic acid (PHBA) destruction: Active site and mechanism. ACS Appl. Mater. Interfaces 8(15), 9710-9720. Wang, Y.X., Cao, H.B., Chen, C.M., Xie, Y.B., Sun, H.Q., Duan, X.G. and Wang, S.B. (2019b) Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping. J. Environ. Chem. Eng. 355, 118-129. Wen, Y., He, K., Zhu, Y.J., Han, F.D., Xu, Y.H., Matsuda, I., Ishii, Y., Cumings, J. and Wang, C.S. (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5. Westerhoff, P., Aiken, G., Amy, G. and Debroux, J. (1999) Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 33(10), 2265-2276. Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E. (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 39(17), 6649-6663. Wolf, C., von Gunten, U. and Kohn, T. (2018) Kinetics of inactivation of waterborne enteric viruses by ozone. Environ. Sci. Technol. 52(4), 2170-2177. Yang, Y., Ok, Y.S., Kim, K.H., Kwon, E.E. and Tsang, Y.F. (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 596-597, 303-320. Yao, C.C.D. and Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking-water contaminants. Water Res. 25(7), 761-773. Yin, R.L., Guo, W.Q., Du, J.S., Zhou, X.J., Zheng, H.S., Wu, Q.L., Chang, J.S. and Ren, N.Q. (2017) Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms. J. Environ. Chem. Eng. 317, 632-639. Ying, G.G., Kookana, R.S. and Kolpin, D.W. (2009) Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. J. Environ. Monit. 11(8), 1498-1505. Yong, E.L. and Lin, Y.P. (2012) Incorporation of initiation, promotion and inhibition in the Rct concept and its application in determining the initiation and inhibition capacities of natural water in ozonation. Water Res. 46(6), 1990-1998. Yong, E.L. and Lin, Y.P. (2013) Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation. Ozone: Sci. Eng. 35(6), 472-481. Yong, E.L. and Lin, Y.P. (2016) Effects of pH value and temperature on the initiation, promotion, inhibition and direct reaction rate constants of natural organic matter in ozonation. RSC Adv. 6(22), 18587-18595. Yoon, Y., Moon, J., Kwon, M., Jung, Y., Kim, S. and Kang, J.W. (2014) Evaluation of the catalytic effect of the ozone/carbon nanotube (O3/CNT) process using para-chlorobenzoic acid (pCBA). Ozone: Sci. Eng. 36(5), 465-471. Yoon, Y., Oh, H., Ahn, Y.T., Kwon, M., Jung, Y., Park, W.K., Hwang, T.M., Yang, W.S. and Kang, J.W. (2017) Evaluation of the O3/graphene-based materials catalytic process: pH effect and iopromide removal. Catal. Today 282, 77-85. Zhang, S., Quan, X., Zheng, J.F. and Wang, D. (2017) Probing the interphase 'HO zone' originated by carbon nanotube during catalytic ozonation. Water Res. 122, 86-95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72587 | - |
| dc.description.abstract | 微污染物(Micropollutants, MPs)在水和廢水中被發現一直受到生態和人類健康方面的關注也是關於水回收的新興問題。臭氧程序已被應用於降解微污染物,但對於臭氧難降解污染物的去除有限。為了進一步改善臭氧難降解污染物的去除,利用催化臭氧化來增強氫氧自由基(Hydroxyl radical, OH•)的形成可以更有效降解這些污染物。本研究的目的是利用氧化石墨烯(Graphene oxides, GOs)催化臭氧程序去除臭氧難降解微污染物,包括酮洛芬、布洛芬和草脫淨。使用不同濃度的過錳酸鉀預處理氧化石墨烯合成具有不同表面氧化程度的氧化石墨烯。氧化石墨烯在臭氧和氫氧自由基鏈反應中的直接反應(Direct reaction)、起始反應(Initiation)、促進反應(Promotion)和抑制反應(Inhibition)的速率常數在不同的pH和氧化程度下皆被測定。結果顯示 GO-3(過錳酸鉀:石墨=3:1)具有最高的起始和抑制能力,羥基(Hydroxyl groups, C-OH)是產生氫氧自由基的活性位點。此外,直接反應、起始反應和抑制反應的速率常數隨著pH值的增加而增加,而促進反應的速率常數沒有明顯的趨勢。速率常數隨氧化石墨烯氧化程度與pH值的變化可歸因於氧化石墨烯表面上大量的含氧官能團(包括羥基、羰基、羧基和環氧基)。由於氫氧自由基的增加,使用氧化石墨烯催化臭氧化可以增加酮洛芬、布洛芬和草脫淨的去除率。結合氧化石墨烯的四個速率常數,可建立模型模擬污染物在催化臭氧程序中的去處情況,並顯示良好的去除效率預測。 | zh_TW |
| dc.description.abstract | The presence of micropollutants (MPs) in water and wastewater has been a concern for ecological and human health. This is also an emerging issue in water reclamation. Ozonation has been applied for MPs abatement but limited removal of ozone-recalcitrant compounds was reported. To further improve the removal of ozone-recalcitrant compounds, catalytic ozonation has been employed to enhance hydroxyl radical (OH•) formation for better degradation of these compounds. The aim of this study is to investigate the removal of ozone-recalcitrant MPs including ketoprofen, ibuprofen and atrazine by catalytic ozonation with graphene oxides (GOs). Different concentrations of KMnO4 were used to pre-treat GOs to achieve different degrees of oxidation on the GO surfaces. The rate constants of GOs in terms of direct ozone reaction (kD), initiation (kI), promotion (kP) and inhibition (kS) in the ozone and hydroxyl radical (OH•) chain reactions were quantified at different pH values and oxidation degrees. It was found that GO-3 (KMnO4: graphite = 3:1) possessed the highest initiation and inhibition capacity and C-OH could be an active site for generating OH•. In addition, the rate constants of direct ozone reaction, initiation and inhibition increased with the increasing pH value, while the rate constants of promotion presented no obvious trend. The variations of the rate constants with pH and oxidation degree of GOs could be ascribed to the abundances of oxygen-containing functional groups including hydroxyl, carbonyl, carboxyl and epoxy groups on the GOs surfaces. The removal of ketoprofen, ibuprofen and atrazine was enhanced by catalytic ozonation with GOs due to improved OH• formation. The removal of these three compounds can be well predicted by incorporating the rate constants of GOs into the degradation kinetic model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:25Z (GMT). No. of bitstreams: 1 ntu-108-R06541116-1.pdf: 5338490 bytes, checksum: b1dc7721c23faaf71d86b3567dc40eda (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II TABLE OF CONTENT IV LIST OF FIGURES VI LIST OF TABLES X Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 Chapter 2 LITERATURE REVIEW 4 2.1 Emerging concerns of micropollutants 4 2.2 Ozonation in water treatment 5 2.3 Ozone and OH• chain reaction 5 2.4 Properties of GOs 11 2.5 Catalytic ozonation of MPs with graphene oxide 13 2.6 Determination of rate constants of GOs in catalytic ozonation 15 2.7 Simulation of catalytic ozonation of MPs by GOs 18 Chapter 3 MATERIALS AND METHODS 20 3.1 Research flowchart 20 3.2 Reagents and chemicals 21 3.3 Stock solutions 21 3.4 Synthesis of GOs 23 3.5 Characterization of GOs 24 3.6 Determination of the rate constants of GOs in catalytic ozonation 25 3.7 Catalytic ozonation of ibuprofen, ketoprofen and atrazine by GOs 26 3.8 Analytical methods 27 Chapter 4 RESLTS AND DISCUSSION 30 4.1 Characterization of GOs 30 4.2 Adsorption of pCBA and MPs by graphite and GOs 48 4.3 Influences of oxidation degree of GOs on rate constants 50 4.4 Influences of pH on GOs rate constants 63 4.5 Removal of MPs by GOs catalytic ozonation 66 Chapter 5 CONCLUSION AND RECOMMEDATIONS 74 5.1 Conclusions 74 5.2 Recommendations 75 REFERECES 76 | |
| dc.language.iso | en | |
| dc.subject | 微污染物 | zh_TW |
| dc.subject | 催化臭氧程序 | zh_TW |
| dc.subject | 羥基自由基 | zh_TW |
| dc.subject | 氧化石墨 | zh_TW |
| dc.subject | 含氧官能團 | zh_TW |
| dc.subject | catalytic ozonation | en |
| dc.subject | micropollutants | en |
| dc.subject | oxygen-containing functional groups | en |
| dc.subject | graphene oxides | en |
| dc.subject | hydroxyl radical | en |
| dc.title | 以氧化石墨烯催化之臭氧處理程序降解酮洛芬、布洛芬及草脫淨 | zh_TW |
| dc.title | Degradation of ketoprofen, ibuprofen and atrazine by catalytic ozonation with graphene oxides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔣本基(Pen-Chi Chiang),席行正(Hsing-Cheng Hsi) | |
| dc.subject.keyword | 催化臭氧程序,羥基自由基,氧化石墨,含氧官能團,微污染物, | zh_TW |
| dc.subject.keyword | catalytic ozonation,hydroxyl radical,graphene oxides,oxygen-containing functional groups,micropollutants, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201902298 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
