請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72576
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗賢 | |
dc.contributor.author | Chia-Min Chen | en |
dc.contributor.author | 陳嘉旻 | zh_TW |
dc.date.accessioned | 2021-06-17T07:01:13Z | - |
dc.date.available | 2019-08-05 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-01 | |
dc.identifier.citation | [1]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
[2]X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, “A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009. [3]C. W. Hsu, et al., “A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise PLLs with Robust Operation under Supply Interference,” IEEE Trans. Circuits Syst. I:Reg. Papers, vol. 62, no. 1, pp. 90-99, Jan. 2015. [4]F. M. Gardner, Phaselock Techniques, third ed. Hoboken, NJ: Wiley, 2005, ch. 1 [5]F. M. Gardner, “Charge-pump phase-lock loops,” IEEE Trans. on Communications, vol. COM-28, no. 11, pp. 1849–1858, Nov. 1980. [6]M. Van Paemel, 'Analysis of a charge-pump PLL: a new model,' IEEE Trans. on Communications, vol.42, pp. 2490-2498, July 1994. [7]D. Liao, F. F. Dai, B. Nauta, and E. Klumperink, “Multi-phase sub-sampling fractional-N PLL with soft loop switching for fast robust locking,” in Proceedings of IEEE Custom Integrated Circuits Conference, pp. 1–4, 2017 [8]D. Liao, F. F. Dai, B. Nauta, and E. Klumperink, “A 2.4-GHz 16-Phase Sub-Sampling Fractional-N PLL With Robust Soft Loop Switching,” IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 715-727, Mar. 2018. [9]X. Gao, E. Klumperink, G. Socci, M. Bohsali, and B. Nauta, “Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector,” IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1809–1821, Sep. 2010. [10]R. B. Staszewski et al., “All digital PLL and transmitters for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2469–2482, Dec. 2005. [11]A. Sharkia, S. Mirabbasi, and S. Shekhar. 'A 0.01 mm2 4.6-to-5.6 GHz sub-sampling type-I frequency synthesizer with −254dB FOM,' in IEEE International Solid-State Circuits Conference, pp. 256-258, 2018. [12]Zhang, Zhao, Guang Zhu, and C. Patrick Yue. 'A 0.65V 12-to-16GHz Sub-Sampling PLL with 56.4 fsrms Integrated Jitter and -256.4dB FoM,' in IEEE International Solid-State Circuits Conference, pp. 488-490, 2019. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72576 | - |
dc.description.abstract | 次取樣 (sub-sampling)技巧近年來常被用於鎖相迴路當中,此技巧能有效降低其頻寬內相位雜訊,因此能將頻寬變寬,得到更低的方均根抖動,然而次取樣迴路的偵測頻率範圍很窄,因此需要額外的鎖頻迴(FLL) 來偵測較大的頻率偏差並進行校正。在使用傳統鎖頻迴路下,當鎖相迴路脫鎖時,會需要很長的鎖定時間,這在許多系統應用下是不被允許的。
本論文實現了一個整數型鎖相迴路,主架構採用次取樣技巧,以降低頻寬內雜訊,另外也使用本論文提出的鎖頻迴路,使得鎖相迴路更加穩定。此鎖相迴路使用TSMC 90-nm CMOS製程實現,核心電路面積為0.3 mm2,整個電路操作於1.2 V,輸出頻率範圍為2.22-2.48 GHz。當輸入參考頻率為20 MHz,輸出頻率為2.42 GHz時,頻寬內相位雜訊為-110 dBc/Hz,在頻率偏移1 kHz至30 MHz內的積分方均根抖動 (RMS Jitter) 為539.3 fs,參考突波 (reference spur) 為-50 dBc,功耗為14.6 mW。當輸出頻率從2.4 GHz切換至2.46 GHz的鎖定時間大約為3.2 μs。 | zh_TW |
dc.description.abstract | Sub-sampling technique has been adopted in the PLL to reduce in-band phase noise nowadays. Hence, the loop bandwidth can be expanded to reduce the RMS jitter furthermore. However, the sub-sampling loop (SSL) can not detect large frequency. It needs an additional frequency-locked loop (FLL) to calibrate frequency. Nevertheless, if the PLL loses lock by some reasons, it needs a long locking time while using the traditional FLL.
This thesis implements an integer-N PLL, which can achieve low in-band phase noise by the sub-sampling technique. In addition, the proposed frequency-locked loop (FLL) makes the PLL more robust. This PLL is fabricated in 90-nm CMOS technology. The active area is 0.3 mm2. The power supply is 1.2 V. The output frequency ranges from 2.22 to 2.48 GHz. From the measurement results, the in-band phase noise is -110 dBc/Hz, the RMS jitter integrated from 10 kHz to 30 MHz frequency deviation is 539.3 fs, the reference spur is -50 dBc. The power consumption is 14.6 mW at 2.42-GHz output frequency with 20-MHz input reference frequency. While switching the output frequency from 2.4 to 2.46 GHz, the locking time is about 3.2 μs。 | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:13Z (GMT). No. of bitstreams: 1 ntu-108-R06943141-1.pdf: 4579318 bytes, checksum: 215a5b2219bb84a75b782662babc0a1d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Table of Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Overview 2 Chapter 2 Introduction to Sub-Sampling PLL and Robust-Locking Mechanism 3 2.1 Introduction 3 2.2 Fundamentals of Phase-Locked Loop 3 2.3 Operation Principle of Sub-Sampling Loop 7 2.4 Linear Model of Sub-Sampling Loop 9 2.5 Robust-Locking Mechanism of Sub-Sampling PLL 13 2.5.1 Frequency Ambiguity 13 2.5.1 Sub-Sampling PLL with Dead Zone 15 2.5.2 Sub-Sampling PLL with Combined SSPD/PFD 19 2.5.3 Sub-Sampling PLL with Soft Loop Switching 23 2.6 Summary 25 Chapter 3 Proposed Sub-Sampling PLL with Robust-Locking FLL 27 3.1 Introduction 27 3.2 Overall Architecture 27 3.3 Sub-Sampling Loop 28 3.3.1 Voltage-Controlled Oscillator 28 3.3.2 Source Follower Buffer 31 3.3.3 Sub-Sampling Phase Detector 32 3.3.4 Pulse Generator 35 3.3.5 Voltage-to-Current Converter 37 3.3.6 Frequency Response 40 3.4 Proposed Robust-Locking FLL 42 3.4.1 Operation Process 42 3.4.2 Design Consideration 44 3.4.3 Linear Model 47 3.5 System Simulation Results 52 3.5.1 Transient Response Under Supply Interference 53 3.5.2 Transient Response Under Switching Frequency 53 3.5.3 Output Clock Spectrum 54 3.6 Summary 56 Chapter 4 Experimental Results 57 4.1 Chip Photo 57 4.2 Printed Circuit Board 58 4.3 Measurement Setup 59 4.4 Measurement Results 60 4.4.1 Phase Noise 60 4.4.2 Output Clock Spectrum 62 4.4.3 Transient Response Under Supply Interference 64 4.4.4 Transient Response Under Switching Frequency 65 4.4.5 Power Consumption Breakdown 66 4.5 Summary 67 Chapter 5 Conclusions and Future Works 71 5.1 Conclusions 71 5.2 Future Works 71 References 73 | |
dc.language.iso | en | |
dc.title | 具穩定鎖定鎖頻迴路之次取樣鎖相迴路設計 | zh_TW |
dc.title | Design of a Sub-Sampling Phase-Locked Loop with a Robust-Locking Frequency-Locked Loop | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉深淵,李泰成,黃柏鈞 | |
dc.subject.keyword | 鎖相迴路,低相位雜訊,次取樣,鎖頻迴路, | zh_TW |
dc.subject.keyword | Phase-Locked Loop,Low-Phase-Noise,Sub-Sampling,Frequency-Locked Loop, | en |
dc.relation.page | 73 | |
dc.identifier.doi | 10.6342/NTU201902252 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。