Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫岩章(En-Jang Sun)
dc.contributor.authorWen-Wei Hsiaoen
dc.contributor.author蕭文偉zh_TW
dc.date.accessioned2021-06-17T07:00:45Z-
dc.date.available2019-08-06
dc.date.copyright2019-08-06
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citationAkiba, M., Y. Ota, I. J. Tsai, T. Hattori, N. Sahashi and T. Kikuchi. 2015. Genetic differentiation and spatial structure of Phellinus noxius, the causal agent of brown root rot of woody plants in Japan. PLoS One. 10(10):e0141792. doi: 10.1371/
Ann, P. J., T. T. Chang and W. H. Ko. 2002. Phellinus noxious brown root rot of fruit and ornamental trees in Taiwan. Plant Dis. 86:820-826.
Ann, P. J. and W. H. Ko. 1992. Decline of longan: association with brown root rot caused by phellinus noxious. Plant Pathol. Bull. 1:19-25.
Ann, P. J., H. L. Lee and T. C. Huang. 1999a. Brown root rot of 10 species of fruit trees caused by Phellinus noxious in Taiwan. Plant Dis. 83:746-750.
Ann, P. J., H. L. Lee and J. N. Tsai. 1999b. Survey of brown root rot disease of fruit and ornamental trees caused by Phellinus noxious in Taiwan. Plant Pathol. Bull. 8:51-60. 83:746-750.
Ann, P. J., J. N. Tsai, I. T. Wang, and M. L. Hsieh. 1999c. Repsonse of fruit trees and ornamental plants to brown root rot disease by artificial inoculation with Phellinus noxius in Taiwan. Plant Pathol. Bull. 8:61-66
Bolland, L. 1984. Phellinus noxious: cause of a significant root-rot in Queensland hoop pine plantations. Aust. For. 47:2-10.
Chang, T. T. 1992. Decline of some forest trees associated with brown root rot caused by Phellinus noxious. Plant Pathol. Bull. 1:90-95.
Chang, T. T. 1995a. Decline of nine tree species associated with brown root rot caused by Phellinus noxious in Taiwan. Plant Dis. 79:962-965.
Chang, T. T. 1995b. A selective medium for Phellinus noxious. Eur. J. For. Pathl. 25:185-190.
Chang, T. T. and W. W. Yang. 1998. Phellinus noxious in Taiwan: distribution, host plants and the pH and texture of the rhizosphere soils of infected host. Mycol. Res. 102:1085-1088.
Chung, C.‐L., S.‐Y. Huang, Y.‐C. Huang, S.‐S. Tzean, P.‐J. Ann, J.‐N. Tsai, C.-C. Yang, H. –H. Lee, T. –W. Huang, H. –Y. Huang, T. –T. Chang, H. –L. Lee and R.‐F. Liou. 2015. The genetic structure of Phellinus noxius and dissemination pattern of brown root rot disease in Taiwan. PLoS One. 10(10), e0139445.
Chung, C. L., T. J. Lee, M. Akiba, H. H. Lee, T. H. Kuo, D. Liu, H. M. Ke, T. Yokoi, M.B. Roa, M. J. Lu, Y. Y. Chang, P. J. Ann, J. N. Tsai, C. Y. Chen, S. S. Tzean, Y. Ota, T. Hattori, N. Sahashi, R. F. Liou, T. Kikuchi and I. J. Tsai. 2017. Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees. Mol. Ecol. 2017 Nov. 26(22):6301-6316.
Corner, E. J. H. 1932. The identification of the brown root rot fungus. Gard. Bull. Straits Settl. 5:317-350.
Cunningham, G. H. 1965. Polyporaceae of New Zealand. N.Z. Dep. Sci. Indust. Res. Bull. 164:221-222.
Fu, C. H. 2005. Study on the Tree Brown Root Rot Disease. Ph. D. Dissertation, National Taiwan University. Taipei, Taiwan. 163 p.
Chou, H., Y. T. Xiao., J. N. Tsai., T. T. Li., H. Y. Wu., L. D. Liu., D. S. Tzeng and C. L. Chung. 2019. In vitro and in planta evaluation of Trichoderma asperellum TA as a biocontrol agent against Pyrrhoderma noxioum, the cause of brown root rot disease of trees. Plant Disease.Doi.org/10.1094/PDIS-01-19-0179-RE.
Hsiao, W. W., T. H. Hung and E. J. Sun. 2019a. The pathogenicity of basidiospores of Phellinus noxius which causes brown root rot disease in Taiwan. Taiwania 64(2):189-194.
Hsiao, W. W., T. H. Hung and E. J. Sun. 2019b. Newly discovered basidiocarps of Phellinus noxius on 33 tree species with brown root rot disease in Taiwan and the basidiospore variations in growth rate. Taiwania 64(3): 97-102.
Ko, W. H., J. Tomita and R. L. Short. 1986. Two natural hosts of Kretzschmaria clavus in Hawaiian forests. Plant Pathol. 35:254-255.
Pegler, D. N. and J. M. Waterson. 1968. Phellinus noxius. No. 195 in Descriptions of Pathogenic Fungi and Bacteria. Commenw. Mycol. Inst., Kew, England.
Plant and Tree Medicine Society of Taiwan (PTMS). 2017. Preventive and therapeutic injection control of tree brown root rot disease. http://www.ptms.org.tw/.
Sahashi, N., M. Akiba, M. Ishihara, K. Miyazaki and N. Kanzaki. 2010. Cross inoculation tests with Phellinus noxius isolates from nine different host plants in the Ryukyu islands, southwestern Japan. Plant Dis. 2010 Mar; 94(3):358-360. doi: 10.1094/
Sawada, K. 1928. Camphor tree decline. Descriptive Catalogue of Formosan Fungi 4:86-91. (in Japanese)
Sawada, K. 1942. Bauhinia decline. Descriptive Catalogue of Formosan Fungi 7:97-98. (in Japanese)
Sun, E. J. 2018. Preventive and therapeutic injection control of tree brown root rot disease and the suggested requirement of professional operation. Taiwan Forestry Journal 44:47-56. (in Chinese)
Sun, E. J. and H. J. Su. 1984. Rapid method for determining differential pathogenicity of Fusarium oxysporium f. sp. cubense using banana plantlets. Trop. Agric. (Trinidad) 61: 7-8.
Taiwan Environmental Protection Administration. 2018. Acid rain in Taiwan. https://acidrain.epa.gov.tw/now/04.htm.
Wu, M. L., C. H. Chen., T. T. Chang., L. M. Jaung., T. H. Hung.2011. Establishment of the SOPsop of PCR detectiom techniques for brown root rot disease. Quarterly Journal of Chinese Forestry 44:7-18.
Zhou, L. W., X. H. Ji., J. Vlasák and Y. C. Dai. 2018. Taxonomy and phylogeny of Pyrrhoderma: a redefinition, the segregation of Fulvoderma, gen. nov., and identifying four new species, Mycologia, 110(5): 872-889. DOI: 10.1080/00275514.2018.1474326.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72551-
dc.description.abstract自2007年至2018年間於臺灣本島及外島進行樹木褐根病之調查,診斷確認感染褐根病 (Phellinus noxius (Corner) G. H. Cunningham) 之病株樣本數量為2,287件;其中在田間較少被發現之褐根病子實體的病株,樣本數量為164件,在這164件案例中,有33種新寄主為田間首次發現樹木褐根病子實體之紀錄。大部分之樹木褐根病子實體為不顯眼、平伏的形式,有些則是托架形態。子實體在臺灣本島及外島都有出現,於臺灣中部及南部出現頻率較高,通常分布於海拔200至300公尺間,另隨著海拔上升至800公尺而逐漸減少。比較34個擔孢子單孢分離株培養於馬鈴薯瓊脂培養基(PDA, potato dextrose agar) 及燕麥抽出物瓊脂培養基 (MEA, malt extract agar medium) 的生長速率差異性,結果顯示培養於PDA上的34株經統計分析共有3個不同等級的生長速率,而在MEA上的則有4個不同等級的生長速率。以上證明褐根病菌的子實體及擔孢子,可增加族群基因之多樣性,有助於樹木褐根病的長距離傳播。
本研究另採集自榕樹之新鮮褐根病子實體中,將所收集之擔孢子置於雨水等不同溶液中,進行擔孢子發芽實驗,結果發現擔孢子在每一種溶液中的發芽率皆超過50%。本研究嘗試以105-106 spores/mL 的擔孢子濃度直接接種在四種不同樹苗的基部,結果皆未出現病徵或病兆,表示無法接種成功。但以105-106 spores/mL 之擔孢子懸浮液,先接種於臺灣櫸木邊材切片,置於室溫下經2個月的觀察,發現有部分的臺灣櫸木邊材切片,可以觀察到褐根病菌感染其上,並形成褐色網紋及菌絲面。將此些褐根病菌成功感染的臺灣櫸木片作為接種源,接種於臺灣櫸木的樹苗,經歷3個月的觀察,可以接種成功,證明褐根病菌擔孢子具有間接感染之能力。本研究自2007年起,在田間2287案例中總共發現了13個褐根病是屬於樹幹直接感染或枝條直接感染的案例,這也間接證明了擔孢子確實具有傳播感染能力。因為颱風於臺灣發生十分頻繁,颱風的侵害常會造成樹木產生傷口,推測擔孢子可以經由此些傷口侵染樹木,達成長距離傳播之結果。
過去在褐根病的實驗中,為確認樹木褐根病菌之病原性,其接種實驗普遍有發病緩慢之問題,甚至有接種二年仍不見接種部位出現病徵或病兆之情況。因此,本研究乃經篩選、測試,選擇出極為敏感之馬拉巴栗 (Pachira macrocarpa (Cham. & Schl.) Schl.) 盆栽樹苗,做為樹木褐根病之接種模式植物。接種方法是以電鑽對莖基部鑽孔,並以接種小麥燕麥粒菌種者發病最快。利用此一簡單快速的方法,馬拉巴栗模式植物可於接種後1至2週內產生病徵,其外部病徵主要為莖腐、樹皮凹陷、褐化、葉片黃化及植株萎凋,莖部之內部病徵則包括組織水浸狀及褐化。以小麥燕麥粒菌種當接種源所產生病徵之效果,較以木屑培養基當接種源之效果好。以馬拉巴栗作為樹木褐根病接種模式植物,符合模式植物之標準,包括「1. 高敏感度,2. 植物材料容易取得,3. 操作容易,4. 病徵容易表現,5. 病徵具有專一性」等。利用此種模式植物,將可用以快速病原性檢測、研究藥劑之藥物動力學,以及各種藥劑對褐根病之防治效能。
zh_TW
dc.description.abstractSince 2007, a comprehensive survey of the occurrence of brown root rot disease has been conducted in Taiwan. The rare basidiocarps of the pathogen Phellinus noxius (Corner) Cunningham were also investigated throughout Taiwan and on outer islands. To 2018, a total of 2,287 disease cases of brown root rot were recorded, and 164 cases were found with basidiocarps on diseased trees. These 164 cases included 33 newly discovered tree hosts on which were borne the fruiting body of P. noxius. Most of the basidiocarps were of the flat type which is inconspicuous, while some belong to the bracket type. Generally, basidiocarps were found in most counties of Taiwan and on the outer islands, but they exhibited higher frequencies in the central and southern parts of Taiwan. They tended to occur more at elevations of 200~300 m in the hills, but gradually disappeared at the elevation increased to 800 m. To compare variations in growth rates, 34 single-basidiospore isolates were obtained and grown on both potato dextrose agar (PDA) and malt extract agar medium (MEA). Results showed three levels of significant growth differences on PDA, and four levels of differences on MEA, indicating growth rate variations among these sexual basidiospores. The abundance of P. noxius basidiocarps in nature suggests that genetically variable basidiospores are involved in long‐distance dispersal of this fungus which is responsible for serious tree diseases.
Fresh basidiospores were collected from live basidiocarps growing on a small-leafed banyan (Ficus microcarpa Linn. f. ), and the basidiospores were rinsed out. The germination experiment revealed that they could germinate in all kinds of liquids including rainwater, with germination rates usually exceeding 50%. The direct inoculation of basidiospore suspensions at concentration of 105~106 spores/mL on four tree species was consistently unsuccessful. The same spore suspension was used to inoculate wood chips from Taiwan zelkova (Zelkova formosana Hayata) sapwood. After 2 months, some of the trees had been colonized by basidiospores, showing dark-brown line or network symptoms. Using these colonized wood chips, we successfully inoculated wounded roots of Taiwan zelkova seedlings within 3 months, proving the virulence and role of basidiospores in nature. Since 2007, 13 cases of twig or stem infection by P. noxius were found in the field, confirming transmission by basidiospores. In Taiwan, due to the high frequency of typhoon damage to trees, abundant stem wounds should act as important sites for basidiospore deposition and infection. This could facilitate the long-distance dispersal of this disease in nature.
Previously, pathogenicity tests for suspected brown root rot pathogen were not easy to conduct and took a very long time. For these reasons, we tried to find a very sensitive plant, the Malabar chestnut (Pachira macrocarpa (Cham. & Schlecht.) Walp.), to use as a bioassay or model plant for this pathogen. The inoculation method with an electric drill followed by insertion of wheat-oat culture inoculum makes this bioassay with Malabar chestnut very easy to conduct. With this simple, rapid method, model plants expressed infection symptoms within 1~2 weeks. External symptoms consist of stem rot, sunken bark, browning, and leaf chlorosis and wilting, while internal symptoms included water-soaking and browning of stem tissues. Inoculation from wheat-oat medium performed the best, much better than the enriched sawdust medium. In conclusion, the Malabar chestnut model as a disease bioassay plant fulfilled the following criteria: (a) high sensitivity; (b) high availability of plant materials; (c) ease of operation; (d) rapid expression of symptoms; and (e) exhibition of specific symptoms. On the basis of this model plant, new fungicides for controlling brown root rot disease were injected into the stem of Malabar chestnut, and the inoculum was simultaneously inoculated to study their control efficacy and fungicidal dynamics in the plant. This plant model can be utilized for the rapid screening of fungicides effective against brown root rot disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:45Z (GMT). No. of bitstreams: 1
ntu-108-D93633001-1.pdf: 16063790 bytes, checksum: 8d138e099dda0f4c9a15738a9263578d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
Abstract iv
Contents vii
List of figures xi
List of tables xiii
Chapter 1 Newly discovered basidiocarps of Phellinus noxius on 33 tree species with brown root rot disease in Taiwan and effects of basidiospore variations on the growth rate 1
1.1 Introduction 2
1.2 Materials and Methods 6
1.2.1 Survey and diagnosis of brown root rot disease of trees in Taiwan 6
1.2.2 Investigation of occurrence of basidiocarps of P. noxius in the field in Taiwan 7
1.2.3 Comparison of growth rates of P. noxius among isolates from single basidiospores 8
1.3 Results 9
1.3.1 Survey and diagnosis of brown root rot disease of trees in Taiwan 9
1.3.2 Investigation of occurrence of basidiocarps of P. noxius in the field in Taiwan 12
1.3.3 Comparison of growth rates of P. noxius among isolates from single basidiospores 20
1.4 Discussion 23
Chapter 2 The pathogenicity of basidiospores of Phellinus noxius which causes brown root rot disease in Taiwan 26
2.1 Introduction 27
2.2 Materials and Methods 30
2.2.1 Collection of P. noxius basidiospores and measurement of their germination rate 30
2.2.2 Direct inoculation with P. noxius basidiospores on tree seedlings 31
2.2.3 Indirect inoculation with P. noxius basidiospores on wood chips then on tree seedlings 32
2.2.4 Investigation of twig or stem infection by P. noxius brown rot in Taiwan 33
2.3 Results 34
2.3.1 Collection of basidiospores and measurement of their germination rates 34
2.3.2 Direct inoculation with P. noxius basidiospores on tree seedlings 37
2.3.3 Indirect inoculation with P. noxius basidiospores on wood chips then on tree seedlings 37
2.3.4 Investigation of twig and stem infection by P. noxius brown rot in Taiwan 40
2.4 Discussion 43
Chapter 3 Malabar chestnut as a model and bioassay plant for Phellinus noxius brown root rot disease 47
3.1 Introduction 48
3.2 Materials and Methods 50
3.2.1 Preliminary screening of sensitive bioassay trees for the brown root rot pathogen 51
3.2.2 Simple inoculation method on stems of Malabar chestnut 52
3.2.3 The histological responses of Malabar chestnut seedlings to P. noxius 54
3.2.4 Comparisons between Malabar chestnut and small-leafed banyan seedlings for their response to P. noxius 54
3.3 Results 56
3.3.1 Preliminary screening of sensitive bioassay trees for brown root rot Pathogen 56
3.3.2 Simple inoculation method on stems of Malabar chestnut 58
3.3.3 Histological responses of Malabar chestnut seedlings to P. noxius 62
3.3.4 Comparisons of responses between Malabar chestnut and small-leafed banyan seedlings to P. noxius 64
3.4 Discussion 66
Reference 69
Appendix:附錄1、自2007年至2018年於臺灣本島及外島發現樹木褐根病菌子實體之寄主及分佈之紀錄 74
dc.language.isoen
dc.subject模式植物zh_TW
dc.subject馬拉巴栗zh_TW
dc.subject指標植物zh_TW
dc.subject病原性檢測zh_TW
dc.subject長距離傳播zh_TW
dc.subject褐根病zh_TW
dc.subject子實體zh_TW
dc.subject擔孢子zh_TW
dc.subjectBrown root roten
dc.subjectModel planten
dc.subjectBioassay planten
dc.subjectMalabar chestnuten
dc.subjectPathogenicity testen
dc.subjectLong-distance dispersalen
dc.subjectBasidiosporeen
dc.subjectPhellinus noxiusen
dc.subjectBasidiocarpen
dc.title臺灣樹木褐根病子實體及其模式植物之研究zh_TW
dc.titleThe studies on basidiocarps and the model plant of
Phellinus noxius in Taiwan
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.coadvisor洪挺軒(Ting- Hsuan Hung)
dc.contributor.oralexamcommittee王亞男(Ya-Nang Wang),曲芳華(F-H Chu),鍾嘉綾(Chia-Ling Chung),吳孟玲(M-L Wu)
dc.subject.keyword褐根病,子實體,擔孢子,長距離傳播,病原性檢測,馬拉巴栗,指標植物,模式植物,zh_TW
dc.subject.keywordBrown root rot,Basidiocarp,Phellinus noxius,Basidiospore,Long-distance dispersal,Pathogenicity test,Malabar chestnut,Bioassay plant,Model plant,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201902257
dc.rights.note有償授權
dc.date.accepted2019-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
15.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved