Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72545
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡明哲
dc.contributor.authorTai-Yi Liuen
dc.contributor.author劉泰億zh_TW
dc.date.accessioned2021-06-17T07:00:39Z-
dc.date.available2022-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-01
dc.identifier.citation[1] Gautam, Mr, Watanabe, K, and Saegusa, H , Journal of Hydrology, Runoff analysis in humid forest catchment with artificial neural network. 2000. 235(1-2): p. 117-136.
[2] White, Ian and Falkland, Tony, Hydrogeology Journal, Management of freshwater lenses on small Pacific islands. 2010. 18(1): p. 227-246.
[3] Barnett, Jon, Regional Environmental Change, Dangerous climate change in the Pacific Islands: food production and food security. 2011. 11(1): p. 229-237.
[4] Manton, Michael J, et al., Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. 2001. 21(3): p. 269-284.
[5] Grasso, Marco, Moneo, Marta, and Arena, Marco, Assessing social vulnerability to climate change in Samoa. Regional Environmental Change, 2013. 14(4): p. 1329-1341.
[6] Jolliffe, Ian T, Weather, Principal component analysis: a beginner's guide—I. Introduction and application. 1990. 45(10): p. 375-382.
[7] Turk, Matthew and Pentland, Alex , Journal of Cognitive Neuroscience, Eigenfaces for recognition. 1991. 3(1): p. 71-86.
[8] Yildiz, Dogan, et al., Detecting seasonal cycle shift on streamflow over Turkey by using multivariate statistical methods. Theoretical and Applied Climatology, 2017. 133(3-4): p. 1143-1161.
[9] Rahman, Md Habibur, Matin, M. A., and Salma, Umma, Analysis of precipitation data in Bangladesh through hierarchical clustering and multidimensional scaling. Theoretical and Applied Climatology, 2017. 134(1-2): p. 689-705.
[10] Chen, Yen‐Chang, Wei, Chiang, and Yeh, Hui‐Chung , Hydrological Processes: An International Journal, Rainfall network design using kriging and entropy. 2008. 22(3): p. 340-346.
[11] Tseng, Hung-Wei, et al., Application of multi-site weather generators for investigating wet and dry spell lengths under climate change: a case study in southern Taiwan. 2012. 26(15): p. 4311-4326.
[12] Chen, Feng-Wen, Liu, Chen-Wuing , Paddy, and Environment, Water, Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. 2012. 10(3): p. 209-222.
[13] Tenenbaum, Joshua B, De Silva, Vin, and Langford, John C , Science, A global geometric framework for nonlinear dimensionality reduction. 2000. 290(5500): p. 2319-2323.
[14] Roweis, Sam T and Saul, Lawrence K , Science, Nonlinear dimensionality reduction by locally linear embedding. 2000. 290(5500): p. 2323-2326.
[15] Böttcher, S., et al., Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting. Journal of Hydrology, 2014. 519: p. 1634-1641.
[16] Hannachi, A. and Turner, A. G., Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection. Geophysical Research Letters, 2013. 40(8): p. 1653-1658.
[17] 邱國益, 流形學習之應用的概觀研究 The Survey for Applications of Manifold Learning, in 應用數學所. 2008, 逢甲大學.
[18] Torgerson, Warren S, Theory and methods of scaling. 1958.
[19] Kruskal, Joseph B , Psychometrika, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. 1964. 29(1): p. 1-27.
[20] Bernstein, Basil B, Pedagogy, symbolic control, and identity: Theory, research, critique. Vol. 5. 2000: Rowman & Littlefield.
[21] Dijkstra, E. W. , Numerische Mathematik, A note on two problems in connexion with graphs. 1959. 1(1): p. 269-271.
[22] Verboon, Peter and Heiser, Willem J., Resistant orthogonal procrustes analysis. Journal of Classification, 1992. 9(2): p. 237-256.
[23] Schönemann, Peter H. and Carroll, Robert M. , Psychometrika, Fitting one matrix to another under choice of a central dilation and a rigid motion. 1970. 35(2): p. 245-255.
[24] Wang, Chang and Mahadevan, Sridhar. Manifold alignment using procrustes analysis. in Proceedings of the 25th international conference on Machine learning. 2008. ACM.
[25] Group, World Bank. Climate Change Knowledge Portal For Development Practitioners and Policy Makers. Available from: https://climateknowledgeportal.worldbank.org/.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72545-
dc.description.abstract在處理複雜或高維度資料時,降維是一個相當重要的課題。傳統的降維方法,如主成分分析,通常為建立在歐式空間中。然而當資料具有曲面的結構時,在歐式距離看似相近的兩點,本質上可能距離非常遠,因而在降維時造成誤差。基於流形學習的非線性降維方法,如等距特徵映射或局部線性嵌入,即是針對上述問題所發展。本研究應用等距特徵映射法分析太平洋島嶼氣候資料,以瞭解其數據的結構。在等距特徵映射中,首先根據原始距離構建鄰接圖,接著利用最短距離演算法所計算出的最短路徑來近似測地線距離。最後,將測地線距離矩陣輸入到多元尺度法中以建立能夠維持高維度裡相似性的二維座標。結果顯示第一個等距特徵映射維度與緯度有關係。另外從資料類別的敏感度分析中,我們可以推斷,對於一些國家,它們可能在空間距離上較近,但是,溫度或降雨距離可能要大得多。此外,藉由本研究我們也可以觀察資料結構隨時間的變化。zh_TW
dc.description.abstractDimensionality reduction is an important issue while dealing with complex datasets. Traditional methods, such as principal component analysis (PCA) or multidimensional scaling (MDS), are usually based on Euclidian distance. However, this may underestimate the true distance between data points while there exists a curved structure of data. In order to solve the problem above, nonlinear dimensionality reduction methods based on manifold learning, such as isometric feature mapping (Isomap) or locally linear embedding (LLE), are proposed. In this study, Isomap is applied to help us understand the structure of climate data in the Pacific Islands. In Isomap, the neighborhood graph is constructed based on the original distance. Next, geodesic distances is approximated by the shortest path calculated by using Dijkstra’s algorithm. Finally, the geodesic distance matrix is imported into multidimensional scaling (MDS) to create a two-dimension map representing their dissimilarities in a higher dimension. Results have shown that the first Isomap dimension has a relationship with latitude. The sensitive analysis of variables has shown that though some countries are spatially close, their temperature or rainfall distance are much farther. Also, we can observe the change of data structure along time through this research.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:39Z (GMT). No. of bitstreams: 1
ntu-108-R06622020-1.pdf: 2451313 bytes, checksum: 254bc9f4de157c9b988cab867fc11ed3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Methodology 5
2.1 Multidimensional scaling (MDS) 5
2.2 Isometric feature mapping(Isomap) 9
2.2.1 Determination of neighborhoods and adjacent map 10
2.2.2 Geodesic distance and shortest path 14
2.3 Comparison of configurations 19
2.3.1 Multiple Solutions to MDS / Isomap 19
2.3.2 Procrustes Analysis 20
Chapter 3 Materials and Procedure 22
3.1 Study Site and data description 22
3.2 Study Process 24
Chapter 4 Results and Discussion 27
4.1 Combination of Variables at Different Ratio 27
4.2 Climate data structure varies with time 34
Chapter 5 Conclusions and Recommendations 46
5.1 Conclusions 46
5.2 Recommendations 47
Reference 48
Appendix 51
dc.language.isoen
dc.subject流形學習zh_TW
dc.subject多元尺度法zh_TW
dc.subject等距特徵映射zh_TW
dc.subject太平洋島嶼氣候zh_TW
dc.subject非線性降維zh_TW
dc.subjectMultidimensional scaling (MDS)en
dc.subjectNonlinear dimension reductionen
dc.subjectManifold learningen
dc.subjectIsometric feature mapping (Isomap)en
dc.subjectPacific Islands climate dataen
dc.title應用等距特徵映射法分析太平洋島嶼氣候資料zh_TW
dc.titleAnalysis of Pacific Islands climate data using Isomap approachen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭克聲,余化龍,溫在弘,郭鴻基
dc.subject.keyword多元尺度法,非線性降維,流形學習,等距特徵映射,太平洋島嶼氣候,zh_TW
dc.subject.keywordMultidimensional scaling (MDS),Nonlinear dimension reduction,Manifold learning,Isometric feature mapping (Isomap),Pacific Islands climate data,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201902324
dc.rights.note有償授權
dc.date.accepted2019-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved