請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72529
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏瑞泓(Jui-Hung Yen) | |
dc.contributor.author | Chen-Kuang Tyan | en |
dc.contributor.author | 田晨光 | zh_TW |
dc.date.accessioned | 2021-06-17T07:00:24Z | - |
dc.date.available | 2024-08-12 | |
dc.date.copyright | 2019-08-12 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-02 | |
dc.identifier.citation | 王一雄,1997。土壤環境汙染與農藥。台北。文明書局股份有限公司。P.283
江佩津,2014。混合施用農藥對水中非目標生物之毒性效應。國立台灣大學農業化學系碩士論文。 李敏郎,2009。植物殺菌劑之使用介紹。P 71-72。 吳昀軒,2015。環境荷爾蒙殺菌劑免課寧影響端足蟲 (Hyallela azteca) 基因表現差異之研究。國立台灣大學農業化學系博士論文。 張文重,2005。水產餌料生物學。屏東。睿煜出版社。 趙怡婷,2016。除蟲菊精類殺蟲劑芬化利與其他四種殺菌劑對端足蟲 (Hyallela azteca) 之混合毒性效應。國立台灣大學農業化學系碩士論文。 Anderson, T. D., & Zhu, K. Y. (2004). Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomus tentans (Diptera : Chironomidae). Pesticide Biochemistry and Physiology, 80(1), 54-64. Ardıç A and Uygun N. (1996). Determination of Odonata fauna in East Mediterranean region. Ankara, Turkey, p. 415-422. Aydin, G., & GÜHer, H. (2017). The Chironomidae (Diptera) fauna of Kırklareli Province (Vol. 41). Baskaran, S., R.S. Kookana, and R. Naidu. (1997). Determination of the insecticide imidacloprid in water and soil using high-performance liquid chromatography. Journal of Chromatography A 787(1-2): p. 271-275. Beketov, M. A., & Liess, M. (2008). An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum. Environmental Pollution, 156(3), 980-987. doi:https://doi.org/10.1016/j.envpol.2008.05.005 Berg, H.B. (1995). Larval food and feeding behavior, p. 136-168. Cavallaro, M. C., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2017). Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environmental Toxicology and Chemistry, 36(2), 372-382. doi:10.1002/etc.3536 DeWalt, R. E., Resh, V. H., & Hilsenhoff, W. L. (2010). Chapter 16 - Diversity and Classification of Insects and Collembola. In J. H. Thorp & A. P. Covich (Eds.), Ecology and Classification of North American Freshwater Invertebrates (Third Edition) (pp. 587-657). San Diego: Academic Press. Eaton, D. L., Daroff, R. B., Autrup, H., Bridges, J., Buffler, P., Costa, L. G., . . . Spencer, P. S. (2008). Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Critical Reviews in Toxicology, 38(sup2), 1-125. doi:10.1080/10408440802272158 Fernandez-Alba, A. R., Valverde, A., Agüera, A., Contreras, M., & Chiron, S. (1996). Determination of imidacloprid in vegetables by high-performance liquid chromatography with diode-array detection. Journal of Chromatography A, 721(1), 97-105. doi:https://doi.org/10.1016/0021-9673(95)00764-4 Fu, Q., Rösch, A., Fedrizzi, D., Vignet, C., & Hollender, J. (2018). Bioaccumulation, Biotransformation, and Synergistic Effects of Binary Fungicide Mixtures in Hyalella azteca and Gammarus pulex: How Different/Similar are the Two Species Environmental Science & Technology, 52(22), 13491-13500. doi:10.1021/acs.est.8b04057 Hargrave, B. T. (1970). The effect of a deposit-feeding amphipod on the metabolism of benthic microflora1. Limnology and Oceanography, 15(1), 21-30. doi:10.4319/lo.1970.15.1.0021 Hasenbein, S., Connon, R. E., Lawler, S. P., & Geist, J. (2015). A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus. Environmental Science and Pollution Research, 22(15), 11327-11339. doi:10.1007/s11356-015-4374-1 Hasenbein, S., Lawler, S. P., Geist, J., & Connon, R. E. (2015). The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms. Ecotoxicology, 24(4), 746-759. doi:10.1007/s10646-015-1420-1 Jeppe, K. J., Carew, M. E., Pettigrove, V., & Hoffmann, A. A. (2017). Toxicant mixtures in sediment alter gene expression in the cysteine metabolism of Chironomus tepperi. Environ Toxicol Chem, 36(3), 691-698. doi:10.1002/etc.3570 Jia, W., Mao, L., Zhang, L., Zhang, Y., & Jiang, H. (2018). Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio). Chemosphere, 207, 573-580. doi:https://doi.org/10.1016/j.chemosphere.2018.05.138 Jin-Clark, Y., Anderson, T. D., & Zhu, K. Y. (2008). Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera : Chironomidae). Archives of Environmental Contamination and Toxicology, 54(4), 645-652. Jin-Clark, Y., Lydy, M. J., & Zhu, K. Y. (2002). Effects of atrazine and cyanazine on chlorpyrifos toxicity in Chironomus tentans (Diptera : Chironomidae). Environmental Toxicology and Chemistry, 21(3), 598-603. Kalogridi, EC., Christophoridis, C and Bizani, E. Environ Sci Pollut Res. (2014). 21: 7239. Katagi, T., & Tanaka, H. (2016). Metabolism, bioaccumulation, and toxicity of pesticides in aquatic insect larvae. Journal of Pesticide Science, 41(2), 25-37. doi:10.1584/jpestics.D15-064 Kello, D. (1989). WHO drinking water quality guidelines for selected herbicides. Food Addit Contam, 6 Suppl 1, S79-85. doi:10.1080/02652038909373761 Lanteigne, M., Whiting, S. A., & Lydy, M. J. (2015). Mixture Toxicity of Imidacloprid and Cyfluthrin to Two Non-target Species, the Fathead Minnow Pimephales promelas and the Amphipod Hyalella azteca. Archives of Environmental Contamination and Toxicology, 68(2), 354-361. doi:10.1007/s00244-014-0086-7 Lencioni, V., Grazioli, V., Rossaro, B., & Bernabo, P. (2016). Transcriptional profiling induced by pesticides employed in organic agriculture in a wild population of Chironomus riparius under laboratory conditions. Science of the Total Environment, 557, 183-191. Martin, J. (2011). Chironomus samoensis is a complex of species. Chironomus Journal of Chironomidae Research. Mugni, H., Paracampo, A., Demetrio, P., Pardi, M., Bulus, G., Ronco, A., & Bonetto, C. (2016). Toxicity Persistence of Chlorpyrifos in Runoff from Experimental Soybean Plots to the Non-target Amphipod Hyalella curvispina: Effect of Crop Management. Archives of Environmental Contamination and Toxicology, 70(2), 257-264. doi:10.1007/s00244-015-0187-y Njattuvetty Chandran, N., Fojtova, D., Blahova, L., Rozmankova, E., & Blaha, L. (2018). Acute and (sub)chronic toxicity of the neonicotinoid imidacloprid on Chironomus riparius. Chemosphere, 209, 568-577. doi:https://doi.org/10.1016/j.chemosphere.2018.06.102 Ohoa-acuna, H., Bialkowski, W., Yale, G., & Hahn, L. (2009). Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna (Vol. 18). OECD 219 (2004). OECD Guideline for The Testing of Chemicals - Sediment-Water Chironomid Toxicity Test Using Spiked Water. OECD 233 (2010). OECD Guideline for The Testing of Chemicals - Sediment-Water Chironomid Life-Cycle Toxicity Test Using Spiked Water or Spiked Sediment. OECD 235. (2011). OECD Guideline for The Testing of Chemicals - Chironomus sp., acute immobilisation test. Pestana, J. L. T., Loureiro, S., Baird, D. J., & Soares, A. M. V. M. (2009). Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquatic Toxicology, 93(2), 138-149. doi:https://doi.org/10.1016/j.aquatox.2009.04.008 Phillips, B. M., Anderson, B. S., Hunt, J. W., Huntley, S. A., Tjeerdema, R. S., Kapellas, N., & Worcester, K. (2006). Solid-phase sediment toxicity identification evaluation in an agricultural stream. Environmental Toxicology and Chemistry, 25(6), 1671-1676. doi:10.1897/05-497r1.1 Pinder, L. C. V. (1995). The habitats of chironomid larvae. In P. D. Armitage, P. S. Cranston, & L. C. V. Pinder (Eds.), The Chironomidae: Biology and ecology of non-biting midges (pp. 107-135). Dordrecht: Springer Netherlands. Pratt, J. R., Melendez, A. E., Barreiro, R., & Bowers, N. J. (1997). Predicting the ecological effects of herbicides. Ecological Applications, 7(4), 1117-1124. Problem Plants of South Africa—Clive Bromilow. (1995). South African Forestry Journal, 174(1), 73-73. doi:10.1080/00382167.1995.9629884 Raby, M., Nowierski, M., Perlov, D., Zhao, X., Hao, C., Poirier, D. G., & Sibley, P. K. (2018). Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environmental Toxicology and Chemistry, 37(5), 1430-1445. doi:10.1002/etc.4088 Rakotondravelo, M. L., Anderson, T. D., Charlton, R. E., & Zhu, K. Y. (2006). Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (diptera: chironomidae). Arch Environ Contam Toxicol, 51(3), 352-359. doi:10.1007/s00244-005-0219-0 Rakotondravelo, M. L., Anderson, T. D., Charlton, R. E., & Zhu, K. Y. (2006). Sublethal Effects of Three Pesticides on Larval Survivorship, Growth, and Macromolecule Production in the Aquatic Midge, Chironomus tentans (Diptera: Chironomidae). Archives of Environmental Contamination and Toxicology, 51(3), 352-359. doi:10.1007/s00244-005-0219-0 Richards, R. P., & Baker, D. B. (1993). Pesticide Concentration Patterns in Agricultural Drainage Networks in the Lake Erie Basin. Environmental Toxicology and Chemistry, 12(1), 13-26. Rogowski, R. (2013). Reflexive Labour Law in the World Society. Rosenberg, D.M. and Resh, V.H. (1993). Introduction to Freshwater Biomonitoring and Benthic Macroinvertebrates. New York, p. 1-9. Saether OA and Langton PH. (2011). New Nearctic species of the Psectrocladius limbatellus group (Diptera: Chironomidae). Aquat Insect 33: 133-163 Schäfer, M. S. (2012). Online communication on climate change and climate politics: a literature review. Wiley Interdisciplinary Reviews: Climate Change, 3(6), 527-543. doi:10.1002/wcc.191 Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., Downs, C., . . . Wiemers, M. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22(1), 5-34. doi:10.1007/s11356-014-3470-y Solis, M., Paracampo, A., Bonetto, C., & Mugni, H. (2019). Acute Toxicity of Chlorpyrifos to Hyalella curvispina: Comparison of Species Sensitivity and Assessment of Environmental Risk. Environmental Processes, 6(1), 107-117. doi:10.1007/s40710-019-00352-3 Solomon, K. R., Baker, D. B., Richards, R. P., Dixon, D. R., Klaine, S. J., LaPoint, T. W., . . . Williams, W. M. (1996). Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 15(1), 31-74. doi:Doi 10.1897/1551-5028(1996)015<0031:Eraoai>2.3.Co;2 Solomon, K. R., Giesy, J. P., LaPoint, T. W., Giddings, J. M., & Richards, R. P. (2013). Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem, 32(1), 10-11. doi:10.1002/etc.2050 Stevens, M. (1992). Toxicity of organophosphorus insecticides to fourth-instar larvae of Chironomus tepperi Skuse (Diptera: Chironomidae) (Vol. 31). Tang, G. H., Yao, J. X., Zhang, X., Lu, N. Y., & Zhu, K. Y. (2018). Comparison of gene expression profiles in the aquatic midge (Chironomus tentans) larvae exposed to two major agricultural pesticides. Chemosphere, 194, 745-754. Tassou, K. T., & Schulz, R. (2013). Low field-relevant tebufenozide concentrations affect reproduction in Chironomus riparius (Diptera: Chironomidae) in a long-term toxicity test. Environ Sci Pollut Res Int, 20(6), 3735-3742. doi:10.1007/s11356-012-1311-4 Thurman, E. M., Goolsby, D. A., Meyer, M. T., Mills, M. S., Pomes, M. L., & Koplin, D. W. (1992). A reconnaissance study of herbicides and their metabolites in surface water of the Midwestern United States using immunoassay and gas chromatography/ mass spectroscopy. Environ. Sci. Technol., 26, 2440-2447. Tomizawa, M., & Yamamoto, I. (1993). Structure-Activity Relationships of Nicotinoids and Imidacloprid Analogs. Journal of Pesticide Science, 18(1), 91-98. doi:10.1584/jpestics.18.91 V. Nebeker, A., & E. Miller, C. (1988). Use of the amphipod crustacean Hyalella azteca in freshwater and estuarine sediment toxicity tests (Vol. 7). Van Wijngaarden, R. P., Brock, T. C., & Douglas, M. T. (2005). Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds. Pest Management Science, 61(10), 923-935. doi:10.1002/ps.1084 Wang, P., Rashid, M., Liu, J., Hu, M., & Zhong, G. (2016). Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils. Food Chemistry, 212, 420-426. doi:https://doi.org/10.1016/j.foodchem.2016.05.008 Warming, T. P., Mulderij, G., & Christoffersen, K. S. (2009). Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin. Environmental Toxicology and Chemistry, 28(2), 374-380. doi:10.1897/08-279.1 Watts, M. M., & Pascoe, D. (1996). Use of the freshwater macroinvertebrate Chironomus riparius (Diptera: Chironomidae) in the assessment of sediment toxicity. Water Science and Technology, 34(7), 101-107. doi:https://doi.org/10.1016/S0273-1223(96)00730-5 Weston, D. P., Poynton, H. C., Wellborn, G. A., Lydy, M. J., Blalock, B. J., Sepulveda, M. S., & Colbourne, J. K. (2013). Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proceedings of the National Academy of Sciences, 110(41), 16532-16537. doi:10.1073/pnas.1302023110 Xing, H. J., Wang, L. L., Yao, H. D., Wang, X. L., & Xu, S. W. (2016). Effects of Atrazine and Chlorpyrifos on Autophagy-Related Genes in the Brain of Common Carp: Health-Risk Assessments. Arch Environ Contam Toxicol, 70(2), 301-310. doi:10.1007/s00244-015-0246-4 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72529 | - |
dc.description.abstract | 近年來農藥的使用日趨頻繁,人們為了改善生活之品質、增加作物產量或環境衛生需求等原因,將大量的化學用品應用在生活中,這些化學用品最終幾乎都會進入水體,對水中的非目標生物造成影響,化學藥品在環境中之流佈和殘留的能力均是造成毒性高低的因子。以指標生物進行急毒性及慢毒性試驗為評估化學品在環境中之毒性的重要方法之一。
淡水生態系中富含多種生物,這些生物的棲息地可分為水體及底泥,目前我國用於檢測水生生物毒性之指標通常採用水蚤及魚類,但兩者皆為代表水體之生物,顯示水體殘留農藥對於底棲生物毒性資料的缺乏。搖蚊和端足蟲均為各地常見的底棲生物,端足蟲廣泛的分布在淡水生態系中,該物種為生態系中之分解者,且可做為多種中高階消費者的食物;搖蚊為淡水生態系中最常見的昆蟲之一,且其在不同的生命階段均對於不同層級的消費者造成影響,此兩種生物對於食物鏈和生態系中都十分重要。因搖蚊為完全變態昆蟲,生命週期較短,且其慢性終點 (羽化率、生質量和成蟲雌雄比) 較容易觀察,因此近年來成為新興之底棲指標生物。此試驗分別以三種臺灣常見農藥,益達胺、陶斯松和亞托敏對於搖蚊和端足蟲進行急毒性試驗,並參考急毒性之LC50進行慢毒性試驗。試驗期間觀察其對於搖蚊和端足蟲於短期之致死效應濃度和搖蚊在長期暴露中所導致的羽化成功率和雌雄比之改變,並使用Probit計算各個終點的效應濃度。 結果顯示,和美國環境保護局 (USEPA) 之生物毒性資料行比較,益達胺、陶斯松和亞托敏對於水生無脊椎生物均屬於劇毒。和臺灣主要河川所檢測出的殘留濃度比對後結果顯示,三種藥物在環境水體中的殘留量均未到達本次試驗搖蚊和端足蟲的急毒性LC50;而益達胺和陶斯松在環境水體中的殘留量則可能對於搖蚊的羽化率及雌雄比產生風險。 | zh_TW |
dc.description.abstract | In recent years, application of pesticide has been more common. For approving qulity of life, increasing the production and requirement of environment, these chemical materials have been used frequently and they almost were transported into the water ecosystem. Acute and chronic toxicity test of indicator organisms is an important way to assess the environmental risk of chemical materials.
There are many creatures that living in water ecosystem. Their main habitats include water body and sediment. The organisms that are used in water ecosystem toxicity test in Taiwan are fish and daphnia, but they can only represent the non-target organism of water body. Chironomidae (Chironomus sp.) and amphipod (Hyalella azteca) are common sediment organism. As a decomposer, amphipods distribute widely in the fresh water in the world. As a predator, these creature are preyed by consumers from several levels, that makes amphipod become a irreplac eable species. Chironomidae is one of universal insect in water ecosystem that can effect different level of preyers in different life stage. Charactersistic that being a holometabolous species, short life cycle and observable chronic endpoint (emergence, biomass and sex ratio of adults), makes it become a rising indicator organism of sediment. These two species are explosed in imidacloprid, Chlorpyrifos and azoxystrobin for toxicity test. Lethal and sublethal (emergence and sex ratio) endpoint are observed during test duration. Half lethal concentration (LC50) of imidacloprid, Chlorpyrifos and azoxystrobin to H. Azteca are 24.4, 0.38 and 513.4 μg L-1, respectively, to Chironomus sp. are 19.4, 0.27 and 237.7μg L-1, respectively. Half effective concentration (emergence) of imidacloprid, Chlorpyrifos and azoxystrobin to Chironomus sp. are 0.107, 0.062 and 128.14 μg L-1, respectively. Sex ratio effected concentration (SEC) of three pesticide to Chironomus sp. are 0.074, 0.053 and 144.85 μg L-1, respectively. Comparing with toxicity data of water ecosystem from USEPA. Three pesticides are classified as high toxic for water organisms. Chironomus sp. that exposed in imidacloprid and azoxysrobin may affected during emergence stage and Chlorpyrifos may cause some impacts during pupa stage. Comparing data of pesticides residues in Taiwan’s main rivers with test data, concentration of residues are lower than LC50 of two species in these test. But concentration of imidacloprid’s and chlorpyrifos’ residues in river are higher than EC50 of emergence and SEC that shows these two pesticides environment may cause influence to non-targeted organisms in long run. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:24Z (GMT). No. of bitstreams: 1 ntu-108-R06623017-1.pdf: 1732292 bytes, checksum: 612de7c70881eea0d7bf552b2a9758d5 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 I
英文摘要 III 目錄 VI 圖目錄 VIII 表目錄 IX 壹、 前言 1 一、 農藥文獻回顧 1 二、 本研究用藥簡介 5 三、 指標生物 10 四、 搖蚊 13 五、 端足蟲 16 貳、 研究目的 21 參、 材料與方法 22 一、 試驗流程 22 二、 藥品與設備 23 三、 端足蟲之馴養 25 四、 端足蟲之急毒性試驗 25 五、 搖蚊之馴養 27 六、 搖蚊之急毒性試驗 27 七、 搖蚊之慢毒性試驗 28 八、 水中安定性試驗 30 肆、 結果與討論 32 一、 水中安定性試驗 32 二、 端足蟲之急毒性試驗 34 三、 搖蚊之急毒性試驗 41 四、 搖蚊之慢毒性試驗 49 伍、 結論 59 陸、 參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 益達胺、陶斯松和亞托敏對兩種環境底棲指標生物(端足蟲和搖蚊)之影響 | zh_TW |
dc.title | Effect of Imidacloprid, Chlorpyrifos and Azoxystrobin on Two Sediment Ecological Indicator Species (Amphipod and Chironomid) | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐慈鴻,蕭旭峰,何素鵬,陳玟瑾 | |
dc.subject.keyword | 指標生物,水生生物,搖蚊,端足蟲,環境毒理, | zh_TW |
dc.subject.keyword | Indicator organism,Aquatic organisms,Chironomid,Amphipod,Environmental toxicology, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU201902232 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-02 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。