Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉
dc.contributor.authorHung-Chi Wuen
dc.contributor.author吳泓錡zh_TW
dc.date.accessioned2021-06-17T07:00:23Z-
dc.date.available2024-08-06
dc.date.copyright2019-08-06
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation1. Ducker Worldwide. 2015 North American Light Vehicle Aluminum Content Study. 2014; Available from: https://www.autonews.com/assets/PDF/CA95065611.PDF.
2. Jung, J., J.I. Yoon, J.H. Moon, H.K. Park, and H.S. Kim, Effect of coarse precipitates on surface roughening of an FCC polycrystalline material using crystal plasticity. Computational Materials Science, 2017. 126: p. 121-131.
3. Khadyko, M., O.R. Myhr, S. Dumoulin, and O.S. Hopperstad, A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys. Philosophical Magazine, 2016. 96(11): p. 1047-1072.
4. Lu, K., L. Lu, and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science, 2009. 324(5925): p. 349-352.
5. Khadyko, M., C.D. Marioara, S. Dumoulin, T. Børvik, and O.S. Hopperstad, Effects of heat-treatment on the plastic anisotropy of extruded aluminium alloy AA6063. Materials Science and Engineering: A, 2017. 708: p. 208-221.
6. Cheng, L.M., W.J. Poole, J.D. Embury, and D.J. Lloyd, The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2003. 34a(11): p. 2473-2481.
7. Taylor, G.I., The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc. R. Soc. Lond. Ser. A, 1934. 145: p. 362-387.
8. Asaro, R.J., Crystal Plasticity. Journal of Applied Mechanics-Transactions of the ASME, 1983. 50(4b): p. 921-934.
9. Li, S., P.V. Houtte, and S.R. Kalidindi, A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method. Modelling and Simulation in Materials Science and Engineering, 2004. 12(5): p. 845-870.
10. Roters, F., P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 2010. 58(4): p. 1152-1211.
11. Nakamachi, E., N. Tam, and H. Morimoto, Multi-scale finite element analyses of sheet metals by using SEM-EBSD measured crystallographic RVE models. International Journal of Plasticity, 2007. 23(3): p. 450-489.
12. Inal, K., R.K. Mishra, and O. Cazacu, Forming simulation of aluminum sheets using an anisotropic yield function coupled with crystal plasticity theory. International Journal of Solids and Structures, 2010. 47(17): p. 2223-2233.
13. Khadyko, M., S. Dumoulin, G. Cailletaud, and O.S. Hopperstad, Latent hardening and plastic anisotropy evolution in AA6060 aluminium alloy. International Journal of Plasticity, 2016. 76: p. 51-74.
14. Dumoulin, S., O. Engler, O.S. Hopperstad, and O.G. Lademo, Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method. Modelling and Simulation in Materials Science and Engineering, 2012. 20(5).
15. Wu, Y., Y. Shen, K. Chen, Y. Yu, G. He, and P. Wu, Multi-scale crystal plasticity finite element method (CPFEM) simulations for shear band development in aluminum alloys. Journal of Alloys and Compounds, 2017. 711: p. 495-505.
16. Feng, Z., H. Li, J. Yang, H. Huang, G. Li, and D. Huang, Macro‑meso scale modeling and simulation of surface roughening: Aluminum alloy tube bending. International Journal of Mechanical Sciences, 2018. 144: p. 696-707.
17. Schäfer, C., J. Song, and G. Gottstein, Modeling of texture evolution in the deformation zone of second-phase particles. Acta Materialia, 2009. 57(4): p. 1026-1034.
18. Kobayashi, S., C. Zambaldi, and D. Raabe, Orientation dependence of local lattice rotations at precipitates: Example of κ-Fe3AlC carbides in a Fe3Al-based alloy. Acta Materialia, 2010. 58(20): p. 6672-6684.
19. Anjabin, N., A. Karimi Taheri, and H.S. Kim, Crystal plasticity modeling of the effect of precipitate states on the work hardening and plastic anisotropy in an Al–Mg–Si alloy. Computational Materials Science, 2014. 83: p. 78-85.
20. Liu, X., W.K. Sun, and K.M. Liew, Multiscale modeling of crystal plastic deformation of polycrystalline titanium at high temperatures. Computer Methods in Applied Mechanics and Engineering, 2018. 340: p. 932-955.
21. Cyr, E.D., A. Brahme, M. Mohammadi, R.K. Mishra, and K. Inal, A new crystal plasticity framework to simulate the large strain behaviour of aluminum alloys at warm temperatures. Materials Science and Engineering: A, 2018. 727: p. 11-28.
22. Bower, A.F., Applied Mechanics of Solids. 1 ed. 2009.
23. Asaro, R.J. and A. Needleman, Overview .42. Texture Development and Strain-Hardening in Rate Dependent Polycrystals. Acta Metallurgica, 1985. 33(6): p. 923-953.
24. Huang, Y., A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Applied Science, Harvard University, Cambridge, MA., 1991.
25. Marin, E.B., On the formulation of a crystal plasticity model. 2006.
26. Ling, X., M.F. Horstemeyer, and G.P. Potirniche, On the numerical implementation of 3D rate-dependent single crystal plasticity formulations. International Journal for Numerical Methods in Engineering, 2005. 63(4): p. 548-568.
27. Groeber M.A. and J. M.A., DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integrat. Mater. Manuf. Innov., 2014. 3.
28. Ganeshan, S., S.L. Shang, H. Zhang, Y. Wang, M. Mantina, and Z.K. Liu, Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics, 2009. 17(5): p. 313-318.
29. Wen, Z., Y.Y. Liu, Z.H. Jia, P.Z. Zhao, Z.Q. Zhang, and Q. Liu, Study of Texture in 6016 Aluminum Alloy during Processing. Materials Science Forum, 2016. 877: p. 356-362.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72528-
dc.description.abstract近年來因應汽車輕量化的趨勢,輕金屬逐漸被應用於汽車構件中,其中又以6000系鋁合金為具有發展潛力的輕金屬之一,然而,鋁合金之顯微結構以及溫成形技術,將是應用鋁合金於汽車產業上最重要兩個議題。欲同時連結兩項因素,晶體塑性有限元素模型(Crystal Plasticity Finite Element Method, CPFEM)將是一套不可或缺的工具,然而,針對析出物於CPFEM之模擬分析,以物理組成律模型(又稱隱式模模型)缺少考慮析出物之幾何,而過往考慮幾合之模擬分析則缺少微觀機制之探討。
因此本研究目的在於延伸隱式模型,加入析出物之幾何效應,稱為顯式模型,並針對析出物的效應提出較合理之組成律假設,同時考慮差排增生與溫度效應,可以與隱式模型互相比較。
組成律模型在本研究中被推導並與實作於Abaqus UMAT上,析出物之形狀、尺寸、分佈、方向、體積分率等因素可以利用Dream.3D建置。相較於隱式模型,顯式模型可以捕捉局部差排密度、應力應變以及晶體方位之改變。除此之外,不同晶體方位、溫度與析出物排向、形狀,將影響啟動的滑移系統,造成晶體方位與析出物方向的改變。在多晶系統分析中,發現析出物造成局部變形的不匹配效應,將抑制整體晶粒旋轉,但也同時產生較多差排密度與應力貢獻,而強烈的金屬組織會產生橘皮組織,並發現溫度與析出物效應相反,會加劇橘皮效應;AA6016-T4P之拉伸變形則成功模擬出差排密度集中於晶界與析出物周圍之效應,此外,在拉伸過程中,整體晶粒方向將逐漸往<100>//RD集中。
zh_TW
dc.description.abstractLightweighting is an important technology trend in the automotive industry. To this end, aluminum alloys have now emerged as a strong candidate of lightweight materials for the industry. For 6000-series aluminum alloys, both microstructural controls and warm forming techniques are the key issues to be resolved in the automotive application. Crystal plasticity finite element method (CPFEM) that links slip activities with mechanical properties is a natural choice to study these issues.
The objective of this study is to incorporate proper precipitate hardening and temperature effects into CPFEM. It is well-known that in the physical-based CPFEM (or implicit model), the effect of geometrically necessary dislocation (GND) is averaged in the constitutive law. This study also extends the implicit model with different precipitate geometries (aka, explicit model) and investigate their effects on texture and mechanical behavior.
The constitutive model is implemented in Abaqus UMAT. Geometries of precipitate such as shape, size, distribution and volume fraction are considered by Dream.3D. In contrast with the implicit model, the local dislocation density, stress concentration and misorientation around precipitate can be predicted by the explicit model. Moreover, the activating slip systems are analyzed under various crystal orientations and types of precipitate.
Finally, we apply CPFEM to study surface roughening effects and texture under plane stain tensile loading. We find that texture band causes surface roughening and higher temperature increases surface roughening effect. In addition, deformation incompatibility between precipitate and crystal limit grain rotation. A 6000 series aluminum alloy, AA6016-T4P, is analyzed under tensile loading. Dislocation density accumulated around precipitate and grain boundary was successfully predicted. Grain orientations after deformation are found to be preferable in <100>//RD.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:23Z (GMT). No. of bitstreams: 1
ntu-108-R06521602-1.pdf: 6443970 bytes, checksum: 5e7efc588d1ce3c2535424f3c84f4efa (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖片目錄 VIII
圖表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 CPFEM應用於鋁合金 4
1.3 研究目的 7
1.4 論文架構 7
第二章 理論與方法 9
2.1 CPFEM 9
2.1.1 Crystal plasticity 9
2.1.2 有限元素法應用於晶體塑性模型 14
2.2 基於差排密度之CPFEM 的實作與推導 22
2.3 前處理與後處理 26
2.3.1 Dream.3D與MTEX 26
2.3.2 歐拉角(Euler angle) 27
2.4 小結 30
第三章 差排密度CPFEM驗證與應用於與析出物分析 31
3.1 純鋁拉伸模擬驗證 31
3.1.1 模型設置 31
3.1.2 模擬結果分析 32
3.2 以顯式與隱式方式探討尺寸效應 34
3.2.1 模型設置 35
3.2.2 模擬結果分析 37
3.3 小結 45
第四章 顯式探討粗大析出物對晶體方位、滑移系統影響分析 46
4.1 常見金屬組織分量在不同溫度下與析出物形狀、方向分析 46
4.1.1 模型設置 46
4.1.2 模擬結果分析 47
4.2 橘皮組織模擬分析 62
4.2.1 模型設置 63
4.2.2 模擬結果分析 64
4.3 AA6016-T4P拉伸分析 69
4.3.1 模型設置 69
4.3.2 模擬結果分析 70
4.4 小結 75
第五章 結論與未來研究方向 77
5.1 結論 77
5.2 未來展望 79
參考文獻 80
附錄一 溫度效應於傳統CPFEM 82
dc.language.isozh-TW
dc.subject鋁合金zh_TW
dc.subject晶體塑性有限元素模型zh_TW
dc.subject析出物zh_TW
dc.subject金屬組織zh_TW
dc.subjectCPFEMen
dc.subjectaluminum alloysen
dc.subjectprecipitateen
dc.subjecttextureen
dc.title以晶體塑性模型探討 6000 系鋁合金析出物與溫成形之影響zh_TW
dc.titleA crystal plasticity study on the effect of precipitation and warm forming of 6000 series aluminum alloyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏鴻威,張書瑋,葉子暘
dc.subject.keyword晶體塑性有限元素模型,鋁合金,析出物,金屬組織,zh_TW
dc.subject.keywordCPFEM,aluminum alloys,precipitate,texture,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201902288
dc.rights.note有償授權
dc.date.accepted2019-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved