Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72518
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛雁冰(Yen-Ping Hsueh)
dc.contributor.authorChing-Wen Changen
dc.contributor.author張晴雯zh_TW
dc.date.accessioned2021-06-17T07:00:14Z-
dc.date.available2021-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-01
dc.identifier.citation1. Allen, J. E., Lawrence, R. A. & Maizels, R. M. (1995) Fine specificity of the genetically controlled immune response to native and recombinant gp15/400 (polyprotein allergen) of Brugia malayi. Infect Immun, 63, 2892-2898.
2. Arribere, J. A., Bell, R. T., Fu, B. X., Artiles, K. L., Hartman, P. S. & Fire, A. Z. (2014) Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics, 198, 837-846.
3. Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. (2007) Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nature Chemical Biology, 3, 420-422.
4. Cox, G. N., Kusch, M. & Edgar, R. S. (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol, 90, 7-17.
5. Davis, M. W., Hammarlund, M., Harrach, T., Hullett, P., Olsen, S. & Jorgensen, E. M. (2005) Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics, 6, 118.
6. Gravato-Nobre, M. J., Nicholas, H. R., Nijland, R., O'Rourke, D., Whittington, D. E., Yook, K. J., et al. (2005) Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics, 171, 1033-1045.
7. Gray, N. F. (1983) Ecology of Nematophagous Fungi - Distribution and Habitat. Annals of Applied Biology, 102, 501-509.
8. Hegenauer, V., Furst, U., Kaiser, B., Smoker, M., Zipfel, C., Felix, G., et al. (2016) Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science, 353, 478-481.
9. Hodgkin, J., Kuwabara, P. E. & Corneliussen, B. (2000) A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol, 10, 1615-1618.
10. Hsueh, Y. P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C. H., Gharib, S., et al. (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife, 6, 21.
11. Hsueh, Y. P., Mahanti, P., Schroeder, F. C. & Sternberg, P. W. (2013) Nematode- trapping fungi eavesdrop on nematode pheromones. Curr Biol, 23, 83-86.
12. Jordanova, R., Radoslavov, G., Fischer, P., Liebau, E., Walter, R. D., Bankov, I., et al. (2005) Conformational and functional analysis of the lipid binding protein Ag-NPA-1 from the parasitic nematode Ascaridia galli. FEBS J, 272, 180-189.
13. Kennedy, M. W. (2000) The polyprotein lipid binding proteins of nematodes. Biochim Biophys Acta, 1476, 149-164.
14. Kennedy, M. W. (2011) The polyprotein allergens of nematodes (NPAs) - structure at last, but still mysterious. Exp Parasitol, 129, 81-84.
15. Kutscher, L. M. & Shaham, S. (2014) Forward and reverse mutagenesis in C. elegans. WormBook, 1-26.
16. Li, L., Ma, M., Liu, Y., Zhou, J., Qu, Q., Lu, K., et al. (2011) Induction of trap formation in nematode-trapping fungi by a bacterium. FEMS Microbiol Lett, 322, 157-165.
17. McDermott, L., Kennedy, M. W., McManus, D. P., Bradley, J. E., Cooper, A. & Storch, J. (2002) How helminth lipid-binding proteins offload their ligands to membranes: differential mechanisms of fatty acid transfer by the ABA-1 polyprotein allergen and Ov-FAR-1 proteins of nematodes and Sj-FABPc of schistosomes. Biochemistry, 41, 6706-6713.
18. McDermott, L., Moore, J., Brass, A., Price, N. C., Kelly, S. M., Cooper, A., et al. (2001) Mutagenic and chemical modification of the ABA-1 allergen of the nematode Ascaris: consequences for structure and lipid binding properties. Biochemistry, 40, 9918-9926.
19. Meenan, N. A., Ball, G., Bromek, K., Uhrin, D., Cooper, A., Kennedy, M. W., et al. (2011) Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of Ascaris reveals a novel fold and two discrete lipid-binding sites. PLoS Negl Trop Dis, 5, e1040.
20. Minevich, G., Park, D. S., Blankenberg, D., Poole, R. J. & Hobert, O. (2012) CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics, 192, 1249- 1269.
21. Nordbrin.B. (1973) Peptide-Induced Morphogenesis in Nematode-Trapping Fungus Arthrobotrys-Oligospora. Physiologia Plantarum, 29, 223-233.
22. Nordbring‐Hertz, B., Jansson, H. B. & Tunlid, A. J. e. L. (2001) Nematophagous fungi.
23. Nordbringhertz, B. & Mattiasson, B. (1979) Action of a Nematode-Trapping Fungus
Shows Lectin-Mediated Host-Microorganism Interaction. Nature, 281, 477-479.
24. Page, A. P. & Johnstone, I. J. W. (2007) The cuticle.
25. Pramer, D. & Stoll, N. R. (1959) Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science, 129, 966-967.
26. Scannapieco, F. A. (1999) Role of oral bacteria in respiratory infection. J Periodontol, 70, 793-802.
27. Srinivasan, J., Kaplan, F., Ajredini, R., Zachariah, C., Alborn, H. T., Teal, P. E. A., et al. (2008) A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature, 454, 1115-U1146.
28. Srinivasan, J., von Reuss, S. H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M. C., et al. (2012) A Modular Library of Small Molecule Signals Regulates Social Behaviors in Caenorhabditis elegans. Plos Biology, 10, e1001237.
29. Tunlid, A., Jansson, H. B. & Nordbringhertz, B. (1992) Fungal Attachment to Nematodes. Mycological Research, 96, 401-412.
30. von Reuss, S. H., Bose, N., Srinivasan, J., Yim, J. J., Judkins, J. C., Sternberg, P. W., et al. (2012) Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J Am Chem Soc, 134, 1817-1824.
31. Wang, H., Park, H., Liu, J. & Sternberg, P. W. (2018) An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9. G3-Genes Genomes Genetics, 8, 3607-3616.
32. Wang, X., Li, G. H., Zou, C. G., Ji, X. L., Liu, T., Zhao, P. J., et al. (2014) Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nature Communications, 5, 9.
33. Y ang, Y ., Y ang, E., An, Z. & Liu, X. (2007) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci U S A, 104, 8379-8384.
34. Yook, K. & Hodgkin, J. (2007) Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics, 175, 681-697.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72518-
dc.description.abstract自然界中,線蟲捕捉菌可以感知線蟲的存在,而 Arthrobotrys oligospora 是常見 的線蟲捕捉菌之一。當 A. oligospora 接觸到秀麗隱桿線蟲 (Caenorhabditis elegans) 時,捕捉網便會開始形成,將秀麗隱桿線蟲捕獲並分解以吸取其養分。本實驗室先前 的研究發現,秀麗隱桿線蟲散發出的費洛蒙-ascarosides ,可以使 A. oligospora 產生 捕捉網。然而,無法生成大部分之 ascarosides 的秀麗隱桿線蟲 daf-22 突變株。相較 於秀麗隱桿線蟲 N2(labstrain) 促使 A.oligospora 產生的捕捉網明顯變少,但還是能 夠促使 A.oligospora 產生捕捉網。因此,我們認為除了 ascarosides ,還有其他的因 子也會被 A.oligospora 所辨認,並促使其產生捕捉網。本研究為了鑑定出這些因子, 我們利用 ethyl methanesulfonate 誘變劑處理 daf-22 突變株,使其隨機的產生突變, 再進一步篩選出,會使 A.oligospora 產生較少捕捉網的突變株。我們總共分離出大約 27000 株 F2 子代,並測試其中大約16000 株,其促使 A. oligospora 產生捕捉網的能 力,也篩選出三株突變株,比起 daf-22 突變株會促使更少的捕捉網產生。拿到突變 株後,我們將三株中具有最明顯性狀的一株,也就是會使 A.oligospora 產生最少捕捉 網的秀麗隱桿線蟲突變株去做基因圖譜 (single nucleotide polymorphism mapping) 和 全基因體定序 (whole-genome sequencing)。根據分析結果找到了極有可能和促使 A.oligospora 產生捕捉網有關的基因。最後,利用 CRISPR-Cas9 的技術,在秀麗隱桿線 蟲的基因 cwp-5 和 npa-1 造成 gene deletion。而 cwp-5 和 npa-1 突變株,比起秀麗 隱桿線蟲野生株,促使 A. oligospora 產生更少的捕捉網。由此可知, cwp-5 和 npa- 1 可能對於促使 A. oligospora 產生捕捉網,扮演了非常重要的角色。zh_TW
dc.description.abstractThe nematode-trapping fungus Arthrobotrys oligospora can sense the presence of nematodes. When A. oligospora is exposed to C. elegans, trap morphogenesis is induced. Previous studies showed that ascarosides, a group of conserved nematode pheromones, are sufficient to induce trap morphogenesis in A. oligospora. However, the C. elegans daf-22 mutant which is defective in the production of most ascarosides, is still capable of triggering trap morphogenesis, suggesting that additional cues from the nematodes can be recognized. To identify the potential non-ascaroside factors from C. elegans that trigger trap morphogenesis, we used ethyl methanesulfonate to mutagenize the daf-22 mutant and screened for mutants that exhibited decreased trap induction ability in A. oligospora. Approximately 27,000 F2 mutagenized nematodes were isolated, and 16,000 of which werescreened for their ability to induce traps. Three mutants that induced fewer traps than daf-22 were identified from genetic screens. We used genetic mapping and whole-genome sequencing to identify the mutations that caused decreased trap induction phenotype in the mutant that exhibited the strongest phenotype and identified loss-of-function mutations in cwp-5 and npa-1. Clean deletion mutants of cwp-5 and npa-1 were generated via CRISPR- Cas9 and the mutants were found to induce fewer traps in A. oligospora than the wild-type N2 strain, indicating that cwp-5 and npa-1 play a role in the induction of trap formation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:14Z (GMT). No. of bitstreams: 1
ntu-108-R06b22012-1.pdf: 17313954 bytes, checksum: 4c2cf4b592c247b1d573d313f5811759 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書......................................................................................i
誌謝.......................................................................................................ii
摘要.............................................................................................................iii Abstract.................................................................................................iv
Chapter 1. Introduction.............................................................................1
Chapter 2. Results..................................................................................6
1.1 Forward genetic screen used to identify mutants that induced fewer traps...............6
1.2 Single nucleotide polymorphism mapping and whole genome sequencing to identify the candidate gene..................................................................................7
1.3 Verification of npa-1 and cwp-5 genes that play a role in inducing trap
morphogenesis in A. oligospora.................................................................9
1.4 Identification of additional cuticle-related genes that play a role in inducing trap
morphogenesis in A. oligospora..............................................................11
1.5 NPA short peptides induce trap morphogenesis in A.oligospora........................12
Chapter 3. Discussion.............................................................................14
Chapter 4. Materials and Method..............................................................17
4.1 Strains................................................................................................17
4.2 Genetic screen.......................................................................................18
4.3 Single nucleotide polymorphism mapping and whole genome sequencing ............19
4.4 Microinjection and screening of CRISPR mutants........................................20 4.5 Molecular cloning of PCR products...........................................................21
4.6 Quantification of trap morphology on NTF..................................................22
4.7 Statistics...........................................................................................23 Chapter 5. Figures...............................................................................25 References.............................................................................................40
dc.language.isozh-TW
dc.subject線蟲捕捉菌zh_TW
dc.subject秀麗隱桿線蟲zh_TW
dc.subjectArthrobotrys oligosporaen
dc.subjectCaenorhabditis elegansen
dc.subjectNPA proteinen
dc.subjectascarosideen
dc.title鑑定秀麗隱桿線蟲促使線蟲捕捉菌捕捉網生成的信號zh_TW
dc.titleIdentification of signals from Caenorhabditis elegans inducing trap morphogenesis in Arthrobotrys oligosporaen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘俊良(Chun-Liang Pan),林晉玄(Ching-Hsuan Lin),詹世鵬(Shih-Peng Chan),張語曲(Yu-Chu Chang)
dc.subject.keyword秀麗隱桿線蟲,線蟲捕捉菌,zh_TW
dc.subject.keywordCaenorhabditis elegans,Arthrobotrys oligospora,ascaroside,NPA protein,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201902348
dc.rights.note有償授權
dc.date.accepted2019-08-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
16.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved