請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72516完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪(Hsin-Haou Huang) | |
| dc.contributor.author | Shu-Cheng Lu | en |
| dc.contributor.author | 呂書成 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:00:12Z | - |
| dc.date.available | 2021-01-20 | |
| dc.date.copyright | 2021-01-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-14 | |
| dc.identifier.citation | [1] J. Allard and N. Atalla, Propagation of sound in porous media modelling sound absorbing materials: Weliy, 2009. [2] X. Sagartzazu, L. Hervella-Nieto, and J.M. Pagalday, 'Review in sound absorbing materials,' Archives of Computational Methods in Engineering, vol. 15, no. 3, pp. 311-342, 2008. [3] M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, 'Acoustic band structure of periodic elastic composites,' Physical Review Letters, vol. 71, no. 13, pp. 2022-2025, 1993. [4] T. Miyashita, 'Sonic crystals and sonic wave-guides,' Measurement Science and Technology, vol. 16, no. 5, pp. R47-R63, 2005. [5] D.W. Prather, S. Shi, J. Murakowski, G.J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R.D. Martin, 'Self-collimation in photonic crystal structures: a new paradigm for applications and device development,' Journal of Physics D: Applied Physics, vol. 40, no. 9, pp. 2635-2651, 2007. [6] Y. Neve-Oz, M.A. Golosovsky, A. Frenkel, and D. Davidov, 'Negative refraction in 2D photonic crystal super‐lattice towards devices in the IR and visible ranges,' Physica Status Solidi (a), vol. 204, no. 11, pp. 3879-3885, 2007. [7] N. Swinteck, J.-F. Robillard, S. Bringuier, J. Bucay, K. Muralidharan, J.O. Vasseur, K. Runge, and P.A. Deymier, 'Phase-controlling phononic crystal,' Applied Physics Letters, vol. 98, no. 10, p. 103508, 2011. [8] L.-Y. Wu and L.-W. Chen, 'Propagation of acoustic waves in the woodpile sonic crystal with a defect,' Applied Acoustics, vol. 73, no. 4, pp. 312-322, 2012. [9] V. Romero-García, A. Krynkin, L.M. García-Raffi, O. Umnova, and J.V. Sánchez-Pérez, 'Multi-resonant scatterers in sonic crystals: locally multi-resonant acoustic metamaterial,' Journal of Sound and Vibration, vol. 332, no. 1, pp. 184-198, 2013. [10] X. Wang, Y. Han, L. Wan, T. Chen, and A. Song, 'Unidirectional transmission of acoustic waves by using transmitted and reflected acoustic metasurfaces,' Japanese Journal of Applied Physics, vol. 57, no. 9, p. 097301, 2018. [11] X. Xue, P. Li, and F. Jin, 'Refraction behavior investigation and focusing control of phononic crystals under external magnetic fields,' Ultrasonics, vol. 96, pp. 261-266, 2019. [12] X. Zhang and Y. Wu, 'Effective medium theory for anisotropic metamaterials,' Scientific Reports, vol. 5, p. 7892, 2015. [13] J. Berryman, 'Long wavelength propagation in composite elastic media I. spherical inclusions,' The Journal of the Acoustical Society of America, vol. 68, no. 6, pp. 1809-1819, 1980. [14] F. Liu, X. Huang, and C.T. Chan, 'Dirac cones at k→=0 in acoustic crystals and zero refractive index acoustic materials,' Applied Physics Letters, vol. 100, no. 7, 2012. [15] Y. Wu, J. Li, Z.Q. Zhang, and C.T. Chan, 'Effective medium theory for magnetodielectric composites beyond the long-wavelength limit,' Physical Review B, vol. 74, p. 085111, 2006. [16] D.-Y. Maa, 'Potential of microperforated panel absorber,' The Journal of the Acoustical Society of America, vol. 104, no. 5, pp. 2861-2866, 1998. [17] Y.J. Qian, D.Y. Kong, S.M. Liu, S.M. Sun, and Z. Zhao, 'Investigation on micro-perforated panel absorber with ultra-micro perforations,' Applied Acoustics, vol. 74, no. 7, pp. 931-935, 2013. [18] W. Guo and H. Min, 'A compound micro perforated panel sound absorber with partitioned cavities of different depths,' Energy Procedia, vol. 78, pp. 1617-1622, 2015. [19] Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, and P. Sheng, 'Locally resonant sonic materials,' Science, vol. 289, no. 5485, pp. 1734-1736, 2000. [20] M.D. Guild, V.M. García-Chocano, W. Kan, and J. Sánchez-Dehesa, 'Acoustic metamaterial absorbers based on multilayered sonic crystals,' Journal of Applied Physics, vol. 117, no. 11, p. 114902, 2015. [21] Z. Zhang, J. Mei, M. Yang, N.H. Chan, and P. Sheng, 'Membrane-type acoustic metamaterial with negative dynamic mass,' Physical Review Letters, vol. 101, no. 20, p. 204301, 2008. [22] G. Ma, X. Fan, P. Sheng, and M. Fink, 'Shaping reverberating sound fields with an actively tunable metasurface,' Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 26, pp. 6638-6634, 2018. [23] Z. Yang, G. Ma, and Ping Sheng, 'Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,' Applied Physics Letters, vol. 96, no. 4, p. 041906, 2010. [24] M. Yang, G. Ma, Z. Yang, and P. Sheng, 'Coupled membranes with doubly negative mass density and bulk modulus,' Physical Review Letters, vol. 110, no. 13, p. 134301, 2013. [25] Y. Zhang, J. Wen, H. Zhao, D. Yu, L. Cai, and X. Wen, 'Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells,' Journal of Applied Physics, vol. 114, no. 6, p. 063515, 2013. [26] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, 'Ultrasonic metamaterials with negative modulus,' Nature Materials, vol. 5, no. 6, pp. 452-456, 2006. [27] N. Cselyuszka, M. Sečujski, and V.C. Bengin, 'Compressibility near zero acoustic metamaterial,' Physics Letters A, vol. 378, no. 16-17, pp. 1153-1156, 2014. [28] X. Cai, Q. Guo, G. Hu, and J. Yang, 'Ultrathin low frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators,' Applied Physics Letters, vol. 105, no. 12, p. 121901, 2014. [29] Y. Li and B.M. Assouar, 'Acoustic metasurface-based perfect absorber with deep subwavelength thickness,' Applied Physics Letters, vol. 108, no. 6, p. 063502, 2016. [30] Y. Tang, S. Ren, H. Meng, F. Xin, L. Huang, T. Chen, C. Zhang, and T.J. Lu, 'Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound,' Scientific Reports, vol. 7, p. 43340, 2017. [31] Y. Wang, H. Zhao, H. Yang, J. Zhong, D. Zhao, Z. Lu, and J. Wen, 'A tunable sound-absorbing metamaterial based on coiled-up space,' Journal of Applied Physics, vol. 123, no. 18, p. 185109, 2018. [32] F. Wu, Y. Xiao, D. Yu, H. Zhao, Y. Wang, and J. Wen, 'Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels,' Applied Physics Letters, vol. 114, no. 15, 2019. [33] Z. Liang and J. Li, 'Extreme acoustic metamaterial by coiling up space,' Physical Review Letters, vol. 108, no. 11, p. 114301, 2012. [34] Z. Liang, T. Feng, S. Lok, F. Liu, K.B. Ng, C.H. Chan, J. Wang, S. Han, S. Lee, and J. Li, 'Space-coiling metamaterials with double negativity and conical dispersion,' Scientific Reports, vol. 3, no. 1, p. 1614, 2013. [35] C. Tristan, M. Fulbert, and G. Emmanuel, 'Bending a quarter wavelength resonator curvature effects on sound absorption properties,' Applied Acoustics, vol. 131, pp. 87-102, 2018. [36] C. Zhang and X. Hu, 'Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability,' Physical Review Applied, vol. 6, no. 6, p. 064025, 2016. [37] H. Kishi, M. Kuwata, S. Matsuda, T. Asami, and A. Murakami, 'Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites,' Composites Science and Technology, vol. 64, no. 16, pp. 2517-2523, 2004. [38] J.G. Gwon, S.K. Kim, and J.H. Kim, 'Sound absorption behavior of flexible polyurethane foams with distinct cellular structures,' Materials and Design, vol. 89, pp. 448-454, 2016. [39] A. Christine, H. Hennion, and J.N. Decarpigny, 'Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: application to Alberich anechoic coatings,' The Journal of the Acoustical Society of America, vol. 90, no. 6, pp. 3356-3367, 1991. [40] V. Eswaran and M.L. Munjal, 'Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: a finite element approach,' The Journal of the Acoustical Society of America, vol. 93, no. 3, pp. 1308-1318, 1993. [41] S.M. Ivansson, 'Sound absorption by viscoelastic coatings with periodically distributed cavities,' The Journal of the Acoustical Society of America, vol. 119, pp. 3558-3567, 2006. [42] X. Wang, 'Porous metal absorbers for underwater sound,' The Journal of the Acoustical Society of America, vol. 122, no. 5, pp. 2626-2635, 2007. [43] J. Wen, H. Zhao, L. Lv, B. Yuan, G. Wang, and X. Wen, 'Effects of locally resonant modes on underwater sound absorption in viscoelastic materials,' The Journal of the Acoustical Society of America, vol. 130, no. 3, pp. 1201-1208, 2011. [44] T. Meng, 'Simplified model for predicting acoustic performance of an underwater sound absorption coating,' Journal of Vibration and Control, vol. 20, no. 3, pp. 339-354, 2014. [45] C. Ye, X. Liu, F. Xin, and T.J. Lu, 'Influence of hole shape on sound absorption of underwater anechoic layers,' Journal of Sound and Vibration, vol. 426, pp. 54-74, 2018. [46] L. Huang, Y. Xiao, J. Wen, H. Zhang, and X. Wen, 'Optimization of decoupling performance of underwater acoustic coating with cavities via equivalent fluid model,' Journal of Sound and Vibration, vol. 426, pp. 244-257, 2018. [47] K. Shi, G. Jin, R. Liu, T. Ye, and Y. Xue, 'Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers,' Results in Physics, vol. 12, pp. 132-142, 2019. [48] G.S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, 'Sound absorption by rubber coatings with periodic voids and hard inclusions,' Applied Acoustics, vol. 143, pp. 200-210, 2019. [49] L. Li, Z. Zhang, Q. Huang, and S. Li, 'A sandwich anechoic coating embedded with a micro perforated panel in high-viscosity condition,' Composite Structures, vol. 235, p. 111761, 2020. [50] Z. Wang, Y. Huang, X. Zhang, L. Li, M. Chena, and D. Fang, 'Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbonfiber honeycomb,' Journal of Sound and Vibration, vol. 479, no. 4, p. 115375, 2020. [51] H. Zhao and G. Gary, 'A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. application to experimental techniques,' Journal of the Mechanics and Physics of Solids, vol. 43, no. 8, pp. 1335-1348, 1995. [52] M.L. Munjal, Acoustics of ducts and mufflers: Wiley, 1987. [53] N.K. Vijayasree and M.L. Munjal, 'On an integrated transfer matrix method for multiply connected mufflers,' Journal of Sound and Vibration, vol. 331, no. 8, pp. 1926-1938, 2012. [54] C. Wang, L. Huang, and Y. Zhang, 'Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern,' Journal of Sound and Vibration, vol. 333, no. 25, pp. 6828-6842, 2014. [55] M. Tao, H. Ye, and X. Zhao, 'Acoustic performance prediction of anechoic layer using identified viscoelastic parameters,' Journal of Vibration and Control, vol. 25, no. 6, pp. 1164-1178, 2018. [56] X.-F. Zhu, S.-K. Lau, Z. Lu, and W. Jeon, 'Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer,' Journal of Sound and Vibration, vol. 461, 2019. [57] A. Kaushik and A. Gupta, 'Reflection of oblique incident acoustic waves at various fluid–solid interface for varying material properties,' Applied Acoustics, vol. 174, 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72516 | - |
| dc.description.abstract | 本文以含有空腔的消聲結構為基礎,提出了一種新型的混合型水下消聲結構,其使用微孔平板和粘彈性材料製造,在不增加結構厚度之情況,提升了低頻區域的聲學吸收效果。理論方面由均質等效之理論模型和傳遞矩陣方法,來評估所提出的非均質消聲結構,同時將理論與有限元素模擬結果作相互驗證,並在有限元素軟體內探討不同頻域所涉及的消聲機制。在聲學性能方面此混合型消聲結構與傳統吸聲器相比獲得大幅的改善,其在2-10kHz的頻域範圍內具有0.8以上的吸聲係數,最後提出了實際於水下應用之結構,說明本文所提出的設計具有作為水下消聲結構應用之潛力。 | zh_TW |
| dc.description.abstract | Based on the traditional anechoic coatings with cavities, this paper proposes a new type of hybrid underwater anechoic coating without increasing the thickness of the coating, which is made of micro-perforated plates and viscoelastic substrate. And this anechoic coating achieves good absorption performance in the low-frequency range. In theory, applications of the concept for homogenized equivalent layer and integrated transfer matrix method to evaluate the sound absorption performance of this nonhomogeneous underwater anechoic coating. Then comparisons of the theoretical model and finite element method to validate that present approach. The results reveal two absorption peaks of the hybrid anechoic coatings appear since the different physical mechanisms. The acoustic performance of the hybrid anechoic coating has been greatly improved compared with the traditional sound absorber. Meanwhile, it is shown that the sound absorption coefficient of structure is achieves 0.8 in the frequency range 2 kHz-10 kHz, which indicates that the design proposed in this paper has the potential to be used as an underwater sound absorption structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:12Z (GMT). No. of bitstreams: 1 U0001-1301202116594500.pdf: 3822988 bytes, checksum: 01d9c2d545acdd611382635fc3df05d3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II 英文摘要 III 圖目錄 VII 表目錄 X 符號說明 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 重要性與貢獻 5 1.4 名詞對照 5 第二章 聲學原理 7 2.1 研究架構與流程 7 2.2 聲波方程式 8 2.2.1 連續方程式 8 2.2.2 尤拉方程式 9 2.2.3 能量方程式 10 2.2.4 狀態方程式 10 2.2.5 線性聲波方程式 11 2.3 波導波傳現象 12 2.3.1 平面波 13 2.3.2 波導管截止頻率 13 2.3.3 阻抗匹配與吸收率 15 2.3.4 微孔平板聲阻抗 17 2.4 傳遞矩陣方法 19 2.5 綜合傳遞矩陣方法 25 第三章 有限元素模型建立 30 3.1 均質水下消聲結構 30 3.2 Alberich型水下消聲結構 32 3.3 混合型消聲結構 35 第四章 理論與有限元素軟體驗證 39 4.1 理論與有限元素法之比較 39 第五章 結果與討論 42 5.1 混合型消聲結構之吸收機制 42 5.2 有限元素法參數研究 44 5.3 不同類型消聲結構之吸聲係數比較 48 5.4 斜向入射模擬結果 49 5.5 理論計算與實際水下應用 57 5.6 設計準則 59 5.6.1 設計目標1:低頻頻率峰值 60 5.6.2 設計目標2:高頻頻率峰值 60 5.6.3 設計目標3:寬帶吸收 61 第六章 結論未來展望 63 6.1 結論 63 6.2 未來展望 64 參考文獻 66 附錄 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 消聲結構 | zh_TW |
| dc.subject | 吸聲系統 | zh_TW |
| dc.subject | 共振現象 | zh_TW |
| dc.subject | 傳遞矩陣法 | zh_TW |
| dc.subject | 綜合傳遞矩陣法 | zh_TW |
| dc.subject | anechoic coating | en |
| dc.subject | sound-absorbing system | en |
| dc.subject | resonance | en |
| dc.subject | transfer matrix method | en |
| dc.subject | integrated transfer matrix method | en |
| dc.title | 以傳遞矩陣法及有限元素法分析水下混合型消聲結構 | zh_TW |
| dc.title | Analysis of Underwater Sound-Absorbing Structure Using Transfer Matrix and Finite Element Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋家驥(Chia-Chi Sung),王昭男(Chao-Nan Wang),黃維信(Wei-Shien Hwang) | |
| dc.subject.keyword | 消聲結構,吸聲系統,共振現象,傳遞矩陣法,綜合傳遞矩陣法, | zh_TW |
| dc.subject.keyword | anechoic coating,sound-absorbing system,resonance,transfer matrix method,integrated transfer matrix method, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU202100058 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1301202116594500.pdf 未授權公開取用 | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
